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1 Bayesian Econometrics in Practice

• The examples given previously were all cases where Bayesian objects of interest, such

as the parameter posterior distribution, marginal likelihood, or posterior predictive

density were known distributions that could be computed analytically.

• However, these are very special cases that correspond to particular combinations of

likelihoods and priors. Deviations from these cases often result in Bayesian objects of

interest that can’t be computed analytically.

• This fact limited the applied usefulness of Bayesian methods for many years.

• The modern approach to Bayesian econometrics when we can’t characterize a distri-

bution analytically is to sample the unknown distribution. Then any object of interest

from the distribution can be estimated from these samples. If we are able to sample

the distribution a lot, these estimates will be very accurate.

• This option has only become available with modern computing power. The revolution

in computing power has also revolutionized the implementation of Bayesian economet-

rics.

2 Sampling Distributions of Interest: Introduction

• The bulk of our discussion going forward in this class will be about obtaining and

using random samples of some vector of random variables X from some probability

distribution p (X). Before beginning, we describe five useful results about random

sampling.

1. Suppose we are interested in obtaining a random sample of Xi, which is the ith

element of X, from the marginal distribution p (Xi). We can do this by obtaining
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a random sample of X from the joint distribution p (X). Then the ith element of

this draw will be a random sample from p (Xi).

2. Partition X into two vectors, denoted Xi and Xj, where X =
(
X ′i, X

′
j

)′
. The

law of total probability tells us that p (Xi, Xj) = p (Xi|Xj) p (Xj). Suppose one

obtains a random sample of Xj from the marginal distribution p (Xj), and denote

this random sample as X̃j. Then, suppose we obtain a random sample of Xi from

the conditional distribution p
(
Xi|X̃j

)
, and denote this random sample as X̃i.

Then X̃ =
(
X̃ ′i, X̃

′
j

)′
is a random sample from the joint distribution p (Xi, Xj)

and, given result #1 above, Xi and Xj are valid random samples from p (Xi) and

p (Xj).

3. Suppose we obtain a random sample of X from p (X). Denote this random sample

as X̃. We can then obtain a random sample from any deterministic function of

X, h (X), by computing h
(
X̃
)

.

4. The previous point motivates a procedure known as Monte Carlo Integration.

Specifically, suppose we wish to compute E (h (X)), where h (X) is a deterministic

function of X, and X is a random variable arising from p (X). Let X [g] be a

random sample from p (X), for g = 1, 2, · · ·, G. Then:

lim
G→∞

1

G

G∑
g=1

h (Xg) = E (h (X)) (1)

5. Suppose we want to sample a truncated distribution:

p (θ) ∝ I (θ) g (θ)

where g (θ) is a probability density function and I (θ) is an indicator function

that is 1 if θ is inside of an acceptable region and 0 if it is not. A simple example

would be a truncated normal distribution. A more complicated example would

be a vector of AR parameters that are constrained such that the AR process is
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covariance stationary.

Suppose we are able to obtain a random draw from g (θ). In this case, a gen-

eral approach to obtain a random draw from the truncated distribution is via

rejection sampling:

(a) Draw θ∗ from g (θ).

(b) If I (θ∗) = 1 then accept the draw of θ∗.

(c) If I (θ∗) = 0 then reject the draw of θ∗ and go to step (a).

• Recall, the three main Bayesian probability distributions of interest are the parameter

posterior density p (θ|Y ), the marginal likelihood p (Y ), and the posterior predictive

density p (y∗|Y ).

• Let us begin by focusing on the posterior density p (θ|Y ). The idea behind simulation

is to obtain random samples from p (θ|Y ) that can then be used to estimate any feature

of the distribution. For most cases we care about, a law of large numbers will apply

that implies convergence of the sample estimate to the population counterpart. Thus,

the accuracy of this estimation can be made arbitrarily high simply by increasing the

number of random samples taken.

• We will typically refer to the number of random samples taken as the “number of

replications” rather than the “sample size” to avoid confusion with the sample size of

Y . However, the number of replications does play the role of a traditional sample size

for estimation of the relevant feature of the posterior density.

• For example, suppose we wish to obtain the mean of the posterior distribution of an

element of θ denoted θi. This posterior is denoted p (θi|Y ). We could obtain G samples

of θ from p (θ|Y ), denoted θ[g], g = 1, · · ·, G, and then form the sample mean:

1

G

G∑
g=1

θ
[g]
i
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This will produce an arbitrarily accurate estimate of E (θi|Y ) as G is made larger and

larger. Implicit in this procedure is result #1 above.

• As another example, say you are interested in computing Pr [θi|Y ] > a. One can

estimate this by sampling θi G times from p (θ|Y ), and then computing the proportion

of the G samples for which θi > a. This is an example of Monte Carlo integration.

• We could also figure out the distribution itself with an arbitrary degree of accuracy. For

a discrete distribution we can just compute the proportion of a large number of draws

that fall on each of the discrete values. For a continuous distribution, we could use a

kernel density estimator applied to lots of draws. In Matlab, the command ksdensity()

will plot an estimate of the density that will be very accurate with a large number of

draws.

• Note that we could, given samples from the posterior distribution of θ, also simulate

samples from the posterior predictive distribution. Suppose we have G draws of θ from

p (θ|Y ). We can then simulate G draws from the posterior predictive distribution,

p (y∗|Y ), by simulating y∗ from p
(
y∗|θ[g], Y

)
, g = 1, 2, · · ·, G. Implicit in this procedure

is result #2 above.

• There are also approaches we can use to estimate the marginal likelihood via simulation.

We will discuss these in detail later.

3 Markov-Chain Monte Carlo Methods

3.1 Introduction

• We have seen that if we can obtain a large number of samples from the posterior dis-

tribution p (θ|Y ) then we can effectively implement the Bayesian approach to econo-

metrics, even if we can’t analytically characterize objects of interest.
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• The remaining question is how we can obtain such samples? There are a large number

of techniques in the Bayesian literature, with many that are effective in low dimensional

problems.

• By far the most popular approaches in use today, particularly in moderate to high

dimensional problems, are examples of what is known as Markov-Chain Monte

Carlo (MCMC or MC2) methods.

• These methods are powerful enough that there are few, if any, distributions arising in

econometric practice that can’t be sampled using MCMC.

• The basic idea behind MCMC is as follows. Suppose we wish to draw random samples

from a distribution, known as the target distribution. The MCMC approach constructs

a stochastic process such that if we were to draw realizations of random variables from

the stochastic process for a long time, then eventually these draws would come from a

stationary distribution that is the target distribution. We can then let the stochastic

process run, and once it converges to the target distribution, we can start collecting

realizations of the stochastic process as draws from the target distribution.

• In the MCMC approach, the stochastic process we construct is a markov chain.

Before we get to MCMC, we will begin by reviewing some basic theory about markov

chains.

3.2 Markov Chain Basics

• A Markov chain is a random sequence of (continuous or discreet) random variables

(X0, X1, X2, · · ·) that have the Markov property, meaning the probability density

of Xt, given all preceding realizations, depends at most on the immediately preceding

realization:
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Pr (Xt+1 ∈ A|Xt, Xt−1, · · ·, X0) = Pr (Xt+1 ∈ A|Xt)

where A is a subset of χ, the sample space for Xt+1.

• The right hand side of this equation is called a transition probability. The value taken

by Xt is called the state of the Markov chain at t. The chain is homogenous if the

transition probabilities do not depend on the date, t.

• In Bayesian applications of MCMC the state of the chainXt is a vector random variable,

usually representing a parameter vector. Its value is a value for each component of Xt.

• A homogenous Markov chain can be fully described by its initial state and the rule

describing how the chain moves from its state at t to its state at t + 1. This rule is

described by the transition kernel, which is a function K (Xt, Xt+1) that for each Xt

provides a probability density for Xt+1. For example, for a Markov chain defined over

a discrete sample space, the transition kernel is given by the pmf:

K (Xt, Xt+1) = Pr (Xt+1|Xt)

For a continuous sample space the transition kernel is written as a pdf:

K (Xt, Xt+1) = p (Xt+1|Xt)

• As we are usually dealing with continuous state spaces, we will write most formulas

going forward using the pdf notation.

• The probability density function of Xt+1 is given by:

pt+1 (Xt+1) =

∫
Xt∈χ

K (Xt, Xt+1) pt (Xt) dXt,
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• A stationary distribution for the Markov chain is a solution to the vector of func-

tional equations:

p (Xt+1) =

∫
Xt∈χ

K (Xt, Xt+1) p (Xt) dXt

• A key element of interest in Markov chain theory is existence of a unique stationary

distribution for a Markov chain. Here we will give the conditions required for a Markov-

chain with a countably infinite state space to have a unique stationary distribution.

Versions of these conditions are available for a continuous state space:

1. Irreducibility: It must be possible to get from any state to any other state.

Thus, every state will be visited if the chain runs long enough, regardless of

where the chain starts.

2. Positive Recurrence: The mean time to return to a state is finite. Thus, every

state will be visited infinitely often if the chain runs long enough.

• We are also interested in whether a Markov chain converges to its unique stationary

distribution. Convergence implies that regardless of the initial distribution, p0 (X0),

pt (xt)→ p (xt) as t→∞.

• A countably infinite Markov chain with a unique stationary distribution will converge

to this stationary distribution irrespective of the initial distribution p0 provided that

the chain is aperiodic. An aperiodic chain rules out a transition kernel that implies

periodic behavior. More formally, it requires that the the probability of a state n

periods in the future, conditional on being in that state today, is not zero once n crosses

some suitably large threshold. There is a version of this convergence requirement for

Markov chains with continuous state spaces.

• Finally, it can be shown that a Markov chain that satisfies properties such that it

converges to a unique stationary distribution will also satisfy an ergodic theorem,
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which justifies the use of post-convergence realizations of Xt to estimate objects of

interest about the target distribution. In particular, the ergodic theorem justifies

Monte Carlo Integration using post-convergence realizations of Xt.

• Putting it all together, suppose we have a Bayesian pdf of interest, such as a posterior

density function. With MCMC techniques, we will simulate realizations of Xt from a

Markov chain where the chain converges to a unique stationary distribution that is the

posterior density function. Once this convergence has occurred, the simulations from

Xt will be from the posterior density function. The ergodic theorem then implies that

we can use these draws to estimate objects of interest about the posterior density, such

as the posterior mean. These estimates can be made arbitrarily good by increasing the

number of draws taken from the chain.

• The remaining difficulty is then to design a Markov chain that converges to the target

density you have in mind. We turn to this next.

4 Metropolis-Hastings Sampler

4.1 Method

• The Metropolis-Hastings (MH) Sampler is an MCMC technique that is very general.

In principle, it can be applied for any model for which we can evaluate the likelihood

function.

• Suppose we have a target distribution of interest that we want to take samples from.

To fix ideas, suppose it is a posterior pdf p (θ|Y ), where θ may be either a scalar or

a vector. We will be interested in designing an MCMC technique that produces a

sequence of draws of θ, where the g[th] draw is denoted θ[g].

• We will start by describing the implementation of the MH sampler. Then we will map
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this implementation into a transition kernel and show that this transition kernel has

stationary density given by p (θ|Y ).

• The MH sampler is implemented through the following algorithm:

1. Generate a proposed value of θ[g+1], called θ∗, from a proposal distribution

q
(
θ|θ[g]

)
.Note that the proposal density is potentially a conditional density, where

the conditioning is on the previous drawn value, θ[g].

2. Compute the acceptance probability:

α
(
θ[g], θ∗

)
= min

(
p (θ∗|Y ) q

(
θ[g]|θ∗

)
p (θ[g]|Y ) q (θ∗|θ[g])

, 1

)

3. Set θ[g+1] = θ∗ with probability α and θ[g+1] = θ[g] with probability 1− α.

4. Increment g and go to 1.

The sampler is initiated with an arbitrary initial value, θ[0].

• Note that the acceptance probability depends on the posterior distribution, which is

what is unknown and we are trying to sample. Thus, at first glance it may appear

that we can’t implement this algorithm. However, note that the posterior distribution

enters twice, once in the denominator and once in the numerator. Thus, we must only

be able to evaluate the ratio:

p (θ∗|Y )

p (θ[g]|Y )
=

p(Y |θ∗)p(θ∗)
p(Y )

p(Y |θ[g])p(θ[g])
p(Y )

=
p (Y |θ∗) p (θ∗)

p (Y |θ[g]) p (θ[g])

and the acceptance probability becomes:

α
(
θ[g], θ∗

)
= min

(
p (Y |θ∗) p (θ∗) q

(
θ[g]|θ∗

)
p (Y |θ[g]) p (θ[g]) q (θ∗|θ[g])

, 1

)
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Assuming we can evaluate the parts of the likelihood function p (Y |θ∗) and the prior

p (θ) that depend on θ we are able to evaluate this ratio. In other words, all we need

to be able to evaluate is the kernel of the posterior.

• What is the transition kernel that corresponds to this algorithm? The transition kernel

is given by:

K
(
θ[g], θ[g+1]

)
= α

(
θ[g], θ[g+1]

)
q
(
θ[g+1]|θ[g]

)
+
(
1− r

(
θ[g]
))
I(θ[g])

(
θ[g+1]

)
where Iθ[g]

(
θ[g+1]

)
as an indicator function that is 1 if θ[g] = θ[g+1] and is 0 otherwise

and:

r
(
θ[g]
)

=

∫
α
(
θ[g], θ[g+1]

)
q
(
θ[g+1]|θ[g]

)
dθ[g+1]

This transition kernel can be loosely interpreted as follows. The first product on the

right hand side is the probability that a θ[g+1] is proposed and accepted, conditional

on the chain being at θ[g]. The remainder of this term assigns extra probability to

the possibility that θ[g+1] = θ[g]. Here, r
(
θ[g]
)

gives the probability that the proposal,

given θ[g], is accepted, so that 1 − r
(
θ[g]
)

is the probability that the proposal isn’t

accepted. In this case, θ[g+1] = θ[g], so this extra probability is given to this case when

we evaluate the transition kernel at θ[g+1] = θ[g].

It is easy to see that this transition kernel is a valid pdf for θ[g+1] conditional on θ[g] as

it integrates to one over θ[g+1] conditional on θ[g].

• Does the MH transition kernel have a stationary distribution equal to p (θ|Y )? Consider

the following result:

A transition kernel is said to be reversible or satisfy detailed balance if the following

is true:
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g
(
θ[g]
)
K
(
θ[g], θ[g+1]

)
= g

(
θ[g+1]

)
K
(
θ[g+1], θ[g]

)
for some pdf g (·) and all θ[g], θ[g+1]. If a transition kernel is reversible, then g (·) is a

stationary distribution of the Markov chain.

Proof: To be a stationary distribution of the chain we require:

g
(
θ[g+1]

)
=

∫
θ[g]

K
(
θ[g], θ[g+1]

)
g
(
θ[g]
)
dθ[g]

Is this true?

g
(
θ[g+1]

)
=

∫
θ[g]

K
(
θ[g+1], θ[g]

)
g
(
θ[g+1]

)
dθ[g]

g
(
θ[g+1]

)
= g

(
θ[g+1]

) ∫
θ[g]

K
(
θ[g+1], θ[g]

)
dθ[g]

g
(
θ[g+1]

)
= g

(
θ[g+1]

)

The first line is justified by detailed balance. The third line is justified since:

∫
θ[g]

K
(
θ[g+1], θ[g]

)
dθ[g] = 1

• Simple algebra demonstrates that the MH transition kernel is reversible with g (·) =

p (θ|Y ). Thus, p (θ|Y ) is a stationary distribution of the chain.

• Robert and Casella (1999, Monte Carlo Statistical Methods) give conditions necessary

for convergence. These conditions will hold for the vast majority of econometric models

and versions of the MH algorithm that we will encounter. Indeed, they are almost never

checked in practice.

• In principle, the proposal density, q
(
θ|θ[g]

)
can be any probability density function. In

practice, nearly all applications of the MH sampler use one of two approaches:
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1. Independence Proposal: q
(
θ∗|θ[g]

)
= q (θ∗). Such a proposal doesn’t depend

on where the chain is now, θ[g]. A common choice for q (·) is the t-distribution.

2. Random Walk Proposal: q
(
θ∗|θ[g]

)
= q

(
|θ∗ − θ[g]|

)
. Such a proposal depends

only on the distance between where the chain is now, θ[g], and the proposed value,

θ∗. Such a proposal can be alternatively written as:

θ∗ = θ[g+1] + v

where v is a vector random variable with mean zero that is distributed i.i.d. with

symmetric distribution q (v). This is where this type of proposal gets the name

random walk. A popular choice for q (·) is a multivariate normal distribution,

v ∼ N (0, R).

Note that for the random walk proposal, q
(
θ∗|θ[g]

)
= q

(
θ[g]|θ∗

)
and thus the

acceptance probability simplifies to:

α
(
θ[g], θ∗

)
= min

(
p (Y |θ∗) p (θ∗)

p (Y |θ[g]) p (θ[g])
, 1

)
• What makes a good proposal? Technically, any proposal will do if we could have our

chain run infinitely. However, some proposal distributions will be more efficient than

others, in that they will adequately sample the target distribution more quickly. Define

the acceptance rate as the proportion of the proposals that are accepted. From the

acceptance probability, the acceptance rate will be determined by the relative posterior

likelihood of proposals vs. where you are now. For an efficient sampler, the rule of

thumb is to have an acceptance rate that is not too high and not too low. If the

acceptance rate is very low then this means that very few proposals are being accepted,

so your sampler is not exploring the distribution very quickly. It usually indicates that

you are generating proposals that are too dispersed, and lie out in the tails of the

posterior. If the acceptance rate is very high, this could mean that your proposed value
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is very close to your current value, which makes the acceptance probability near one.

Again, this will be a case where you will cover the distribution very slowly. Although

there is no general optimal acceptance rate, a general rule of is to have an acceptance

rate that falls somewhere between 20% and 50%, although moderate deviations from

this are unlikely to make a huge difference.

• While a very high acceptance probability is usually considered to be a bad thing, it

is worth noting that this doesn’t have to be true. As an extreme example, consider

a case where the proposal density function is the posterior density function, p (θ|Y ).

In this case, we would want to accept every draw from the proposal density function,

since these draws are draws from the target density function. If we look at the MH

acceptance probability, this is exactly what would happen:

α
(
θ[g], θ∗

)
= min

(
p (θ∗|Y ) p

(
θ[g]|Y

)
p (θ[g]|Y ) p (θ∗|Y )

, 1

)
= 1

Thus, a high acceptance probability could simply mean that your proposal density is

very close to your target density. However, in order to be safe this is not usually how

a high acceptance probability is interpreted.

• How can we calibrate the proposal density? Here we will discuss one popular approach

based on a Large Sample Approximation:

• It can be shown that as n→∞, the posterior density converges to a Gaussian limiting

distribution with mean equal to θ̂, the posterior mode, and variance-covariance ma-

trix equal to the inverse of the negative Hessian matrix for the posterior distribution

evaluated at the mode. This motivates the approximation:

p (θ|Y ) ≈ (2π)−
k
2 |H|−

1
2 exp

[
−1

2

(
θ − θ̂

)′
H−1

(
θ − θ̂

)]
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where H =
[
−
[
d2

dθ2
log p (θ|Y )

]
θ=θ̂

]−1
.

Note that both θ̂ and H can be computed given only the kernel of the posterior.

• We might then use θ̂ and H as the location and scale parameters of a t-distribution

for the independence proposal. The additional degrees of freedom parameter can be

calibrated to yield an acceptable acceptance rate.

• We might also use H to calibrate the variance-covariance matrix of the variance v in

the random walk proposal. This would usually be implemented by setting R = cH,

where c is a scalar parameter that can be scaled to yield an acceptable acceptance rate.

• It is important to note that this approach does not rely on this large sample approx-

imation to describe the posterior distribution. It simply uses it to scale the proposal

efficiently.

• The presentation of the MH algorithm above sampled all of the elements of θ at

the same time. It is sometimes convenient to separate your parameters into multi-

ple ”blocks”, and then implement the MH algorithm one block at a time.

• In particular, suppose we partition θ = (θ′1, θ
′
2)
′ and that we wish to obtain samples from

the joint posterior distribution, p (θ1, θ2|Y ). Design two MH transition kernels, one with

stationary distribution p (θ1|θ2, Y ) and one with stationary distribution p (θ2|θ1, Y ). We

can then implement an MH algorithm one block at a time as follows:

1. Generate a proposed value of θ
[g+1]
1 , called θ∗1, from a proposal distribution, q1 (·).

To ease notation, we will assume that the proposal doesn’t depend on θ
[g]
2 , and so

can be written as q1

(
θ1|θ[g]1

)
. This is usually the case in practice.
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2. Compute the acceptance probability:

α
(
θ
[g]
1 , θ

∗
1

)
= min

 p
(
θ∗1|θ

[g]
2 , Y

)
q1

(
θ
[g]
1 |θ∗1

)
p
(
θ
[g]
1 |θ

[g]
2 , Y

)
q1

(
θ∗1|θ

[g]
1

) , 1


= min

 p
(
Y |θ∗1, θ

[g]
2

)
p
(
θ∗1|θ

[g]
2

)
q1

(
θ
[g]
1 |θ∗1

)
p
(
Y |θ[g]1 , θ

[g]
2

)
p
(
θ
[g]
1 |θ

[g]
2

)
q1

(
θ∗1|θ

[g]
1

) , 1


3. Set θ
[g+1]
1 = θ∗1 with probability α and θ

[g+1]
1 = θ

[g]
1 with probability 1− α.

4. Generate a proposed value of θ
[g+1]
2 , called θ∗2, from a proposal distribution,

q2

(
θ2|θ[g]2

)
.

5. Compute the acceptance probability:

α
(
θ
[g]
2 , θ

∗
2

)
= min

 p
(
θ∗2|θ

[g+1]
1 , Y

)
q2

(
θ
[g]
2 |θ∗2

)
p
(
θ
[g]
2 |θ

[g+1]
1 , Y

)
q2

(
θ∗2|θ

[g]
2

) , 1


= min

 p
(
Y |θ[g+1]

1 , θ∗2

)
p
(
θ∗2|θ

[g+1]
1

)
q2

(
θ
[g]
2 |θ∗2

)
p
(
Y |θ[g+1]

1 , θ
[g]
2

)
p
(
θ
[g]
2 |θ

[g+1]
1

)
q2

(
θ∗2|θ

[g]
2

) , 1


6. Set θ
[g+1]
2 = θ∗2 with probability α and θ

[g+1]
2 = θ

[g]
2 with probability 1− α.

7. Increment g and go to 1.

The chain can be initialized with arbitrary initial value θ
[0]
2 .

• It is somewhat surprising that this algorithm works. The draws in each step are

only one draw from a chain that has a convergent distribution equal to a conditional

posterior distribution, where the conditioning is with respect to the previous draw from

the other block. However, it can be shown that the draws from this algorithm will be

reversible with stationary distribution p (θ|Y ). The fact that this is true is known as

the product of kernels principle.
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• The above algorithm can be generalized in the obvious way to a MH sampler with J

blocks.

• Why we would want to run a MH sampler with more than one block? One reason is that

it may make calibrating proposal densities easier. If there are lots of parameters, or if

parameters are of very different types, breaking these into groups can make thinking

about proposal densities simpler.

• Another reason is that you may be running a “Metropolis within Gibbs” sampler. We

will talk about these after we cover the Gibbs Sampler.

4.2 Metropolis-Hastings Example: Nonlinear Regression

• Consider the nonlinear regression model:

Y = f (X, γ) + ε

where Y = (y1, y2, · · ·, yN), X = (X1, X2, · · ·, Xk) is the standard matrix of k right-

hand side variables, and γ is a vector of parameters. The function f (·) produces a

vector output.

• The likelihood function for this model will be determined by the assumption about ε.

• The prior will be denoted p (γ, h).

• Finally, we would need a proposal density, q
(
γ, h|γ[g], h[g]

)
.

• Given these three items, we then implement the MH algorithm using the steps described

above.

• To gain additional insights we consider a specific example. Suppose yi measures the

output of the ith firm, and x1,i and x2,i measure labor and capital input for this firm.
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Suppose output is produced via a CES production function plus a constant and a

random disturbance term unique to the ith firm.

yi = γ1 +
(
γ2x

γ4
1,i + γ3x

γ4
2,i

) 1
γ4 + εi

Suppose we have N observations Y = (y1, y2, · · ·, yN), X = (X1, X2). We write the

model as:

Y = f (X, γ) + ε

where γ = (γ1, γ2, γ3, γ4), ε = (ε1, ε2, · · ·, εN), and the ith element of f (·) is:

γ1 +
(
γ2x

γ4
1,i + γ3x

γ4
2,i

) 1
γ4

We assume that:

ε ∼ N
(
0, h−1IN

)
.

• Likelihood Function:

p (Y |γ, h,X) = (2π)−
N
2 h

N
2 exp

[
−h

2
(Y − f (X, γ))′ (Y − f (X, γ))

]

• Prior Distribution:

We assume independent Normal and gamma priors for γ and h, so that p (γ, h) =

p (γ) p (h)

γ ∼ N (µ, V )

h ∼ Gamma (m, v)

So:

p (γ) = (2π)−
k
2 |V |−

1
2 exp

[
−1

2
(γ − µ)′ V −1 (γ − µ)

]
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p (h) =
1(

2m
v

)v/2 1

Γ
(
v
2

)h v−2
2 exp

[
− hv

2m

]

• Posterior Distribution:

Again, to implement the MH Sampler we only need evaluate the kernel of the posterior

distribution. Using Bayes Rule, and eliminating all the terms that don’t depend on γ

or h this is given by:

p (γ, h|Y,X)

∝ p (Y |γ, h,X) p (γ, h|X)

∝ p (Y |γ, h,X) p (γ) p (h)

∝ (2π)−
N
2 h

N
2 exp

[
−h

2
(Y − f (X, γ))′ (Y − f (X, γ))

]
× (2π)−

k
2 |V |−

1
2 exp

[
−1

2
(γ − µ)′ V −1 (γ − µ)

]
× 1(

2m
v

)v/2 1

Γ
(
v
2

)h v−2
2 exp

[
− hv

2m

]
∝ h

N
2 exp

[
−h

2
(Y − f (X, γ))′ (Y − f (X, γ))

]
exp

[
−1

2
(γ − µ)′ V −1 (γ − µ)

]
× h

v−2
2 exp

[
− hv

2m

]

Note that we can evaluate these terms, and this is all that is required to compute the

acceptance rate.

• Proposal Density:

Collect the parameters into the vector θ = (γ, h). For the proposal density we consider

a random walk proposal:

θ∗ = θ[g] + v

where v ∼ N (05, R). In this case, R is a 5×5 variance-covariance matrix. To calibrate
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R we might use the variance covariance matrix of the large sample approximation to

the posterior:

R =

[
−
[
d2

dθ2
ln (p (θ|Y ))

]
θ=θ̂

]−1
=

[
−
[
d2

dθ2
ln (p (Y |θ) p (θ))

]
θ=θ̂

]−1
.

where θ̂ is the mode of the posterior distribution.

• Acceptance Probability:

Given the above, the acceptance probability is then:

α
(
θ[g], θ∗

)
= min

(
p (Y |θ∗) p (θ∗)

p (Y |θ[g]) p (θ[g])
, 1

)
= min

(
p (Y |γ∗, h∗) p (γ∗) p (h∗)

p (Y |γ[g], h[g]) p (γ[g]) p (h[g])
, 1

)

• MH Algorithm

The MH sampler for our nonlinear regression model is then implemented as follows:

1. Generate a proposal θ∗ = (γ∗, h∗), as:

θ∗ = θ[g] + v

where v ∼ N (05, R).

2. Set θ[g+1] = θ∗ with probability α
(
θ[g], θ∗

)
and θ[g+1] = θ[g] with probability

1− α
(
θ[g], θ∗

)
.

3. Increment g and go to 1.

The sampler is initiated with an arbitrary initial values, θ[0] =
(
γ[0], h[0]

)
.

• Note that in the above sampler, it is possible for the proposal distribution to produce

a proposed value for h that is negative. However, this proposal will be accepted with
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probability zero, as p (h∗) will be zero in the numerator of the acceptance probability.

5 Exercise: Nonlinear Regression

Consider the nonlinear regression model:

yi =
(
γ1x

γ3
1,i + γ2x

γ3
2,i

) 1
γ3 + εi

Suppose we have N observations Y = (y1, y2, · · ·, yN)′, X1 = (x1,1, x1,2 · ··, x1,N)′, and X2 =

(x2,1, x2,2 · ··, x2,N)′. We write the model as:

Y = f (X1, X2, γ) + ε

where ε = (ε1, ε2, · · ·, εN)′, γ = (γ1, γ2, γ3)
′, and the ith element of f (·) is:

(
γ1x

γ3
1,i + γ2x

γ3
2,i

) 1
γ3

We assume that:

ε ∼ N
(
0, h−1IN

)
.

In the zip file “nonlinear regression.zip” you will find an Excel dataset called “nonlin regression data.xls,”

which holds data on N = 100 observations of Y , X1 and X2. You will also find a collection

of Matlab programs. The main program in this folder is “NL Regression MH.m” and the

rest are functions called by this program. The code is designed to sample from the posterior

distribution p (h, γ|Y ). The code assumes the following priors:

p (γ, h) = p (γ) p (h)

γ ∼ N (µ, V )
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h ∼ Gamma (m, v)

The programs use a random walk proposal distribution:

γ∗
h∗

 =

γ[g]
h[g]

+ η

where η ∼ N (04, R). To set R, we first calculate the asymptotic covariance matrix for the

maximum likelihood estimates, call this Σ̂ and then set R = τ Σ̂. In this program, setting

τ = 1 yields acceptance rates of around 40%.

Begin by looking through this code to make sure you understand how the code implements

the MH algorithm. Take particular note of how the acceptance probability is calculated, first

by computing the log of the acceptance probability and then exponentiating. This is done

because the likelihood function values in the numerator and denominator of the acceptance

probability can be so small that they will be numerically rounded to zero by MATLAB. By

taking logs this problem is alleviated. In other words, to a computer, p (Y |γ, h) reaches 0

faster than log (p (Y |γ, h)) reaches −∞.

Once you understand the code, experiment with different runs of the sampler, where you

change the value of τ . Notice what happens to the acceptance rate as you do this.

See if you can calibrate the proposal density in a different way and still get reasonable

acceptance rates. For example, try setting R = τIk, where Ik is the k × k identity matrix.
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