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1 The Gibbs Sampler

1.1 Method

• The Gibbs Sampler is a popular MCMC technique. It can be motivated as a special

case of the Metropolis-Hastings algorithm. It can’t always be implemented, but when

it can, it is often a very efficient sampler.

• Suppose we have a target distribution of interest. To work with a specific example,

suppose it is a Bayesian posterior density p (θ|Y ). Suppose θ is a vector, and partition

its elements into two vectors, θ1 and θ2, such that θ = (θ′1, θ
′
2)
′. The target distribution

can then be written as:

p (θ|Y ) = p (θ1, θ2|Y )

• We saw before that we could use a Metropolis-Hastings algorithm implemented in

two blocks to sample from p (θ|Y ) = p (θ1, θ2|Y ) . Suppose we do this, but with a

very particular choice for the proposal densities. Specifically, suppose we set the two

proposal densities as:

q1

(
θ1|θ[g]1 , θ

[g]
2

)
= p

(
θ1|θ[g]2 , Y

)
q2

(
θ2|θ[g+1]

1 , θ
[g]
2

)
= p

(
θ2|θ[g+1]

1 , Y
)

• If we plug these proposal densities into the formula for the acceptance probability, it is

easy to see that the acceptance probability for proposed draws θ?1 or θ?2 will always be

1. In other words, with these proposal densities, we will always accept the proposed

draws.

• Recognizing this, the Gibbs sampler is then implemented through the following algo-

rithm:

1. Generate a random value of θ
[g+1]
1 from p

(
θ1|θ[g]2 , Y

)
2



2. Generate a random value of θ
[g+1]
2 from p

(
θ2|θ[g+1]

1 , Y
)

3. Increment g and go to 1.

The sampler is initiated with an arbitrary initial values, θ
[0]
2 .

• Note that a key requirement to be able to use the Gibbs Sampler is that p (θ1|θ2, Y )

and p (θ2|θ1, Y ) are known conditional densities that we can directly sample from. This

isn’t always the case, which is why the Gibbs Sampler can’t always be used.

• By virtue of this being an example of an MH algorithm, we know that draws from

the Gibbs Sampler will converge to draws from a stationary distribution that is the

joint posterior density p (θ1, θ2|Y ). We could also see that p (θ1, θ2|Y ) is a stationary

distribution for the Gibbs Sampler by direct inspection of the transition kernel for the

Gibbs Sampler. We will do this next.

• We wish to sample from p (θ1, θ2|Y ). To implement this using MCMC techniques, we

require a transition kernel:

K
(
θ[g], θ[g+1]

)
= K

((
θ
[g]
1 , θ

[g]
2

)
,
(
θ
[g+1]
1 , θ

[g+1]
2

))
such that the Markov chain converges to the target distribution p (θ1, θ2|Y ).

• The Gibbs Sampler defines a transition kernel as follows:

K
(
θ[g], θ[g+1]

)
= p

(
θ
[g+1]
2 |θ[g]1 , Y

)
p
(
θ
[g+1]
1 |θ[g+1]

2 , Y
)

In other words, the transition kernel is the the product of two conditional densities.

The first gives the posterior probability density for θ
[g+1]
2 , conditional on the value of

θ
[g]
1 . The second gives the posterior probability density for θ

[g+1]
1 , conditional on θ

[g+1]
2 .
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This is a valid transition kernel for a Markov chain, as the Markov property holds.

The probability of state θ[g+1] depends only on the past states through θ[g].

• The Markov chain associated with the Gibbs Sampler transition kernel will have a

stationary distribution equal to the target distribution p (θ|Y ) if the following is true:

p
(
θ
[g+1]
1 , θ

[g+1]
2 |Y

)
=

∞∫
−∞

∞∫
−∞

p
(
θ
[g+1]
2 |θ[g]1 , Y

)
p
(
θ
[g+1]
1 |θ[g+1]

2 , Y
)
p
(
θ
[g]
1 , θ

[g]
2 |Y

)
dθ

[g]
1 dθ

[g]
2

• Is this true?

p
(
θ
[g+1]
1 , θ

[g+1]
2 |Y

)
=

∞∫
−∞

p
(
θ
[g+1]
2 |θ[g]1 , Y

)
p
(
θ
[g+1]
1 |θ[g+1]

2 , Y
)
p
(
θ
[g]
1 |Y

)
dθ

[g]
1

p
(
θ
[g+1]
1 , θ

[g+1]
2 |Y

)
= p

(
θ
[g+1]
1 |θ[g+1]

2 , Y
) ∞∫
−∞

p
(
θ
[g+1]
2 |θ[g]1 , Y

)
p
(
θ
[g]
1 |Y

)
dθ

[g]
1

p
(
θ
[g+1]
1 , θ

[g+1]
2 |Y

)
= p

(
θ
[g+1]
1 |θ[g+1]

2 , Y
) ∞∫
−∞

p
(
θ
[g+1]
2 , θ

[g]
1 |Y

)
dθ

[g]
1

p
(
θ
[g+1]
1 , θ

[g+1]
2 |Y

)
= p

(
θ
[g+1]
1 |θ[g+1]

2 , Y
)
p
(
θ
[g+1]
2 |Y

)
p
(
θ
[g+1]
1 , θ

[g+1]
2 |Y

)
= p

(
θ
[g+1]
1 , θ

[g+1]
2 |Y

)

Thus, the transitional kernel for the Gibbs Sampler has a stationary distribution equal

to the target distribution.

• Note that there was nothing special about the ordering in the transition kernel in this

derivation. We could have alternatively used the transition kernel:

K
(
θ[g], θ[g+1]

)
= p

(
θ
[g+1]
1 |θ[g]2 |Y

)
p
(
θ
[g+1]
2 |θ[g+1]

1 |Y
)

• This derivation shows that the Gibbs sampler has the right transition kernel in terms

of the existence of a stationary distribution. Again, this means that if we were lucky
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enough to have our initial value for the chain, θ[0] be from p
(
θ[0]
)
, then all subsequent

draws, θ[g], g = 1, 2, · · · would also be draws from p
(
θ[g]
)
.

• However, if we are starting from some arbitrary θ[0], we need the Gibbs transition

kernel to satisfy irreducibility, recurrence and aperiodicity to guarantee convergence to

a unique stationary distribution. Conditions on the Gibbs transition kernel necessary

to demonstrate convergence are provided in Geweke (2005, Contemporary Bayesian

Econometrics and Statistics). However, these are rarely checked in practice for specific

models. For most models used in econometric practice, concerns about the applicability

of convergence theorems are not substantial.

• Assuming this is a convergent chain, we can then begin to collect the draws of θ[g] =(
θ
[g]
1 , θ

[g]
2

)
after g is sufficiently large to ensure convergence has occurred. These draws

will then be valid draws from p (θ|Y ).

• Note that while each post-convergence draw of θ[g] considered by itself will be a draw

from p (θ|Y ), the draws will not be independent draws. Indeed, the dependence between

the draws can be quite high. For this reason, some have argued for using only every

jth draw to reduce the dependence in the draws. However, the ergodic theorem tells

us this is unnecessary. The general rule is that the more dependence there is in your

draws, the longer you need to sample to obtain convergence, and the longer you need

to sample post-convergence to adequately estimate your objects of interest from the

posterior distribution.

• The choice of how θ is split into θ1 and θ2 is called “blocking”. This choice is not

important for the theoretical justification of the Gibbs Sampler. In practice the block-

ing choice is made in a way to make construction of the required conditional posterior

distributions easier / feasible.

• Finally, although we have presented it this way, there is nothing about the Gibbs
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Sampler that requires we have two blocks. Suppose we block θ into J blocks, θ =

(θ′1, θ
′
2, · · ·, θ′J)′. Then we can implement the Gibbs Sampler via the following algorithm:

1. Generate a random value of θ
[g+1]
J from p

(
θJ |θ[g]j<J , Y

)
2. Generate a random value of θ

[g+1]
J−1 from p

(
θJ−1|θ[g+1]

J , θ
[g]
j<J−1, Y

)
3. Generate a random value of θ

[g+1]
J−2 from p

(
θJ−2|θ[g+1]

J , θ
[g+1]
J−1 , θ

[g]
j<J−2, Y

)
.

.

J. Generate a random value of θ
[g+1]
1 from p

(
θ1|θ[g+1]

j>1 , Y
)

Repeat steps 1 through J.

The sampler can be initialized with arbitrary initial value θ
[0]
j<J .

• Finally, it is sometimes the case that we are implementing a Gibbs Sampler, but one

(or more) of the conditional densities p (θj|θ6=j, Y ) are unknown. In this case, we can

substitute a draw from what is often called a “Metropolis step,” meaning that we

draw a proposal for θj from a proposal density and accept or reject this proposal

using a Metropolis-Hastings acceptance probability designed to produce a chain with

convergent distribution p (θj|θ6=j, Y ). This produces a so-called “Metropolis-within-

Gibbs” sampler.

2 Sampling the Posterior Predictive Density

• Recall, the posterior predictive density is the Bayesian object of interest for forecasting:

p (y∗|Y ) =

∫
θ

p (y∗, θ|Y )dθ
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• For most models we care about, we won’t be able to calculate this integral directly.

However, recall from our discussion of sampling that we can generate a draw from

p (y∗, θ|Y ) by first generating a draw from the posterior distribution for θ, p (θ|Y ) ,

and then generating a draw from p (y∗|θ, Y ). This second draw can usually be generated

easily given knowledge of the likelihood function. Recall then that the draws of y∗ from

p (y∗, θ|Y ) will be valid draws from the posterior predictive density, p (y∗|Y ).

• Using these draws we can then estimate objects of interest from the posterior predictive

density, or the density itself, to an arbitrary degree of accuracy.

3 Gibbs Sampler Example 1: Normal Linear Regres-

sion with Independent Normal and Gamma Priors

• Recall the Gaussian linear regression model with likelihood:

p (Y |β, h,X) = (2π)−
N
2 h

N
2 exp

[
−h

2

(
β − β̂OLS

)′
X′X

(
β − β̂OLS

)]
exp

[
−h

2
e′OLSeOLS

]

The priors are:

p (β, h) = p (β) p (h)

where:

β ∼ N (µ, V )

h ∼ Gamma (m, v)

The full equation for these prior probability distribution functions are:

p (β) = (2π)−
k
2 |V |−

1
2 exp

[
−1

2
(β − µ)′ V −1 (β − µ)

]
7



p (h) =
1(

2m
v

)v/2 1

Γ
(
v
2

)h v−2
2 exp

[
− hv

2m

]

• To implement the Gibbs sampler, we will use the blocking β and h. We then require

both conditional posterior distributions, p (β|h,X, Y ) and p (h|β,X, Y ).

• Consider first p (β|h,X, Y ). From Bayes Rule:

p (β|h, Y,X) ∝ p (Y |β, h,X) p (β|h,X)

Because of the prior independence of β and h, as well as the exogeneity of X, p (β|h,X)

in this equation is equivalent to our prior, p (β).

p (β|h, Y,X) ∝ p (Y |β, h,X) p (β)

Now, plugging in the equations for these components and eliminating terms that don’t

depend on β we have:

p (β|h, Y,X) ∝ exp

[
−1

2

((
β − β̂OLS

)′
hX′X

(
β − β̂OLS

)
+ (β − µ)′ V −1 (β − µ)

)]

If we use our completion of the square formula and again eliminate terms that do not

depend on β, we obtain:

p (β|h, Y,X) ∝ exp

[
−1

2

[
(β − µ)′ V (β − µ)

]]
,
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where:

V = hX′X + V −1

µ = V
−1
(
hX′Xβ̂OLS + V −1µ

)
= V

−1 (
hX′Y + V −1µ

)

This is recognized as the kernel of a multivariate normal distribution with mean vector

µ and variance-covariance matrix V
−1

. Thus:

β|h, Y,X ∼ N
(
µ, V

−1
)

• To complete the Gibbs sampler we then need p (h|β, Y,X). Applying Bayes Rule as

before, we have:

p (h|β, Y,X) ∝ p (Y |β, h,X) p (h)

Plugging the equations into this formula and eliminating all terms that don’t rely on

h we have:

p (h|β, Y,X) ∝ h
N
2 exp

[
−h

2

(
β − β̂OLS

)′
X′X

(
β − β̂OLS

)]
exp

[
−h

2
e′OLSeOLS

]
h

v−2
2 exp

[
− hv

2m

]
p (h|β, Y,X) ∝ h

N+v−2
2 exp

[
−h

2

[(
β − β̂OLS

)′
X′X

(
β − β̂OLS

)
+ e′OLSeOLS +

v

m

]]

This is the kernel of a Gamma distribution with parameters m and v:

v = N + v

m =
v(

β − β̂OLS
)′

X′X
(
β − β̂OLS

)
+ e′OLSeOLS + v

m
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This can be simplified somewhat by recalling that:

(Y −Xβ)′ (Y −Xβ) =
(
β − β̂OLS

)′
X′X

(
β − β̂OLS

)
+ e′OLSeOLS

So:

m =
v

(Y −Xβ)′ (Y −Xβ) + v
m

Thus:

h|β, Y,X ∼ Gamma (m, v)

• The Gibbs sampler for the linear regression model with independent normal prior for

slope coefficients and Gamma prior for the precision parameter is then implemented

as follows:

1. Generate a random value of h[g+1] from Gamma (m, v)

2. Generate a random value of β[g+1] from N
(
µ, V

−1
)

3. Increment g and go to 1.

The sampler is initialized with an arbitrary initial value for β, denoted β[0]:

4 Exercise: Gibbs Sampler for Linear Regression Model

In the zipped collection of filed titled “Linear Regression GS.zip” you will find a dataset

called “TeachingRatings.xls,” which holds data regarding N = 463 courses taught at the

University of Texas at Austin over the period 2000-2002. The various series are:

• course eval: An instructor evaluation score, on a score of 1 (very unsatisfactory) to 5

(excellent).
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• beauty: Rating of instructor physical appearance by a panel of six students, averaged

across the six panelists. This variable is shifted to have a sample mean of zero. Thus,

a score of 0 is “average” beauty.

• female: A dummy variable that is 1 if the instructor is female.

• minority: A dummy variable that is one if is the instructor is non-White.

• nnenglish: A dummy variable that is one if the instructor is a non-native English

speaker.

• intro: A dummy variable that is one if the course is “Introductory”, which is mainly

large freshman and sophomore classes.

• one credit: A dummy variable that is one if the course is a single-credit elective course.

• age: The instructor’s age.

This dataset was used in Hamermesh and Parker, 2005, “Beauty in the Classroom: Instruc-

torsÕ Pulchritude and Putative Pedagogical Productivity,” Economics of Education Review.

We will consider a linear regression in which course eval is the independent variable, labeled

Y and beauty, female, minority, nnenglish, intro, age, and one credit are independent vari-

ables, labeled X2 through X8 respectively. X1 will be an N × 1 vector of ones, which will

incorporate an intercept into the regression model. Consider the following linear regression

model with Gaussian errors:

Y = Xβ + ε,

ε ∼ N
(
0N, h

−1IN
)

where Y = (y1, y2, · · ·, yN)′, X = (X1, X2, · · ·, Xk), Xj = (xj,1, xj,2, · · ·, xj,N)′, ε = (ε1, ε2, · · ·, εN)′,

and β = (β1, β2, · · ·, βk)′. Here k = 8 is the number of slope parameters in the model (in-

cluding the intercept).
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Assume we have independent Normal and Gamma prior distributions for β and h:

p (β, h) = p (β) p (h)

β ∼ N (µ, V )

h ∼ Gamma (m, v)

The full equations for these prior probability distribution functions are:

p (β) = (2π)−
k
2 |V |−

1
2 exp

[
−1

2
(β − µ)′ V −1 (β − µ)

]

p (h) =
1(

2m
v

)v/2 1

Γ
(
v
2

)h v−2
2 exp

[
− hv

2m

]

We set the hyperparameters for the prior distribution as µ = 08, V = 10I8, m = 1 and v = 3.

The Matlab programs “Bayesian Beauty Regression.m”, “gen beta.m”, and “gen h.m” are

set up to sample from p (β, h|Y ) using the Gibbs Sampler. Work with these programs to

make sure you understand them. Here are some suggested activities:

1. Sample the posterior distribution, p (β, h|Y ) using the Gibbs Sampler. Make a table

listing the posterior mean, posterior standard deviation, and 90% central posterior

interval for each β parameter and for the disturbance variance, σ2 = h−1. Also in the

table include the OLS estimate of each β parameter.

2. Plot an estimate of the marginal posterior density of the coefficient on the “beauty”

variable, p (β2). You can do this by using the Matlab command ksdensity applied to

the random draws of β2.

3. Suppose you have a null hypothesis that perceived beauty increases course evaluations,

all else equal. Using the random samples from the Gibbs Sampler, report your estimate

of Pr (β2 > 0) as a way of evaluating the evidence regarding this hypothesis.
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4. Suppose you believe that perceived beauty affects course evaluations differently for

male vs. female instructors. Modify the code to remove X2 from the regression, and

replace it with two new variables, X2 ∗X3 and X2 ∗ (1−X3). Report your estimates of

the posterior mean, standard deviation, and 90% central posterior interval of the slope

parameters on these two new variables. Also, plot the marginal posterior density for

each of these slope parameters on the same graph.

5. Rerun the Gibbs Sampler with different initial values. Do the results change much?

6. Extra, Extra Credit: Suppose you believe that the conditional volatility of course

evaluations might be different for male vs. female instructors. Suppose we believe

that:

εi ∼ N (0, hi) (1)

where hi = h if X3i = 0 and hi = h∗ if X3i = 1. The distribution for ε is then given by:

ε ∼ N (0N, diag (h1, h2, h3, · · ·, hN))

where diag (·) indicates a diagonal matrix with diagonal entries given by its argument.

Here h measures the precision of the regression for a course with a male instructor,

while h∗ measures the precision for a course with a female instructor. You should use

independent gamma priors for h and h∗:

p (h, h∗) = p (h) p (h∗)

h ∼ Gamma (m, v)

h∗ ∼ Gamma (m∗, v∗)

where m = m∗ = 1 and v = v∗ = 3.

Modify the code you used from the previous problem to sample the posterior distribu-
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tion, p (β, h, h∗|Y ) using the Gibbs Sampler. Define σ = h−0.5 and σ∗ = h∗−0.5. Report

the posterior means of σ and σ∗ and plot the estimated probability density function

for each of these (on the same graph). Also report the posterior mean of the ratio:

σ∗

σ

and plot the estimated probability density function of the draws of this ratio.

You will need to design a modified Gibbs sampler to complete this problem. I suggest

that you use a three-block Gibbs Sampler with one block being β and the other two

being h and h∗.

5 Gibbs Sampler Example 2: Probit Model

• For our second example, we will show how the Gibbs Sampler can be implemented for

a probit model. This example is interesting in its own right, and will also introduce a

technique known as Data Augmentation.

• Suppose we have a discrete, bivariate, random variable yi ∈ {0, 1}. The probit model

assumes that:

yi =


1 if y∗i ≥ 0

0 if y∗i < 0

where:

y∗i = xiβ + εi

εi ∼ N
(
0, h−1

)

and xi = (x1,i, x2,i, · · ·, xk,i), where xj,i is the ith observation of the jth variable.
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• In the probit model y∗i is not observed, and is referred to as a latent variable or latent

data.

• The probit model implies the following probability distribution for yi:

Pr (yi = 1|β, h, xi) = Pr (εi ≥ −xiβ|β, h, xi)

= Pr
(
−h0.5εi ≤ h0.5xiβ|β, h, xi

)
= Pr

(
ε∗i ≤ h0.5xiβ|β, h, xi

)

where ε∗i = (−h0.5εi) ∼ N (0, 1).

Thus, we have:

Pr (yi = 1|β, h, xi) = Φ
(
h0.5xiβ

)
where Φ (·) is the standard normal cumulative density function. Using similar calcula-

tions we have:

Pr (yi = 0|β, h, xi) = 1− Φ
(
h0.5xiβ

)
Note that since β and h0.5 enter the probability distribution for yi in exactly the same

way, they will not be separately identified in the likelihood function. The usual practice

is to normalize h = 1. Then:

Pr (yi = 1|β, xi) = Φ (xiβ)

Pr (yi = 0|β, xi) = 1− Φ (xiβ)

In these equations I have eliminated the conditioning on h = 1, but it should be

remembered that all probability distributions computed below are conditional on h = 1.

• Note that y∗i takes the form of a Normal linear regression with known precision. This
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will be useful in later derivations.

• Suppose we have N observations on yi, collected in Y = (y1, y2, · · ·, yN)′, and xi,

collected in X = (x′1, x
′
2, · · ·, x′N)′. We wish to conduct Bayesian estimation of the

parameters of this model, which is β.

• To do so we need a prior for β. Here we assume a Gaussian prior:

β ∼ N (µ, V )

• In the Bayesian framework, latent data is treated like any other unobserved object,

and incorporated into the problem as one of the unknown quantities of interest. Thus,

we will approach Bayesian estimation of the probit model by constructing a Gibbs

sampler to sample from the joint posterior distribution of β and Y ∗ = (y∗1, y
∗
2, · · ·, y∗N)′:

p (β, Y ∗|Y,X)

To implement the Gibbs Sampler we will sample iteratively from the two conditional

posterior distributions:

p (β|Y ∗, Y,X)

p (Y ∗|β, Y,X)

Note that in one of these distributions we will simulate a realization of the latent data,

Y ∗. Then, will condition on this realization of Y ∗ in the second distribution to obtain

a draw of β. This simulating of latent data to use as conditioning information in other

simulation steps is known as data augmentation.

• We then need to figure out how to sample from the two required distributions.
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Sampling p (β|Y ∗, Y,X):

First, note that conditional on Y ∗, Y provides no additional information, as its elements

simply indicate the signs of the elements of Y ∗. Thus:

p (β|Y ∗, Y,X) = p (β|Y ∗, X)

Second, note that:

Y ∗ = Xβ + ε (2)

where ε ∼ N (0N , IN). Thus, Y ∗ takes the form of a linear regression model with slope

parameters β and known precision (h = 1). We also have a Gaussian prior for β that

is independent of h. Using the results we had earlier for the posterior of β in a linear

regression conditional on h = 1 we then have:

β|Y ∗,X ∼ N
(
µ, V

−1
)

where:

V = X′X + V −1

µ = V
−1 (

X′Y ∗ + V −1µ
)

We can then obtain random draws of β from this normal distribution.

Sampling p (Y ∗|β, Y,X):

Applying Bayes Rule we have

p (Y ∗|β, Y,X) ∝ Pr (Y |β, Y ∗, X) p (Y ∗|β,X)
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Since Y is a deterministic function of Y ∗, the first term on the right-hand side above

is equivalent to:

Pr (Y |β, Y ∗, X) = Pr (Y |Y ∗)

This will equal 1 if Y correctly indicates the sign of Y ∗ and 0 otherwise. Also, it can

be written as the product of N independent distributions:

Pr (Y |Y ∗) =
N∏
i=1

Pr (yi|y∗i )

Each term in this product is one if yi correctly indicates the sign of y∗i and 0 otherwise.

The second term on the right-hand side is given by:

Y ∗|β,X ∼ N (Xβ, IN)

This distribution can also be written as the product of N independent distributions:

p (Y ∗|β,X) =
N∏
i=1

p (y∗i |β,Xi)

where

y∗i |β,Xi ∼ N (Xiβ, 1)

Putting this all together we have:

p (Y ∗|β, Y,X) ∝
N∏
i=1

Pr (yi|y∗i ) exp
(
−0.5 (y∗i −Xiβ)2

)

Each of the terms in this product represents the kernel of an independent truncated

normal distribution for y∗i . When yi = 1, the term is a normal distribution that is

left truncated at y∗i = 0. When yi = 0, the term is a normal distribution that is right
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truncated at y∗i = 0. As p (Y ∗|β, Y,X) is proportional to this product, this probability

distribution is then given by:

Y ∗|β, Y,X ∼
N∏
i=1

(N0+ (Xiβ, 1))yi (N0− (Xiβ, 1))1−yi

where N0+ and N0− indicate left and right truncation at 0 respectively. We can sample

this truncated distribution via rejection sampling:

1. Draw y∗i from N (xiβ, 1).

2. If yi = 1 and y∗i ≥ 0 or yi = 0 and y∗i < 0 then accept the draw of y∗i . Otherwise,

go to 1 and redraw.

Repeat 1 and 2 for i = 1, 2, · · ·, N

• The Gibbs sampler for the probit model with normal prior for β is then implemented

as follows.

1. Generate N independent random variates y
∗[g+1]
i , i = 1, · · ·, N from N0+ (Xiβ, 1)

if yi = 1 and from N0− (Xiβ, 1) if yi = 0.

2. Generate a random value of β[g+1] from N
(
µ, V

−1
)

3. Increment g and go to 1.

The sampler is initialized with an arbitrary initial value for β, denoted β[0]:

• Once convergence has occurred, the sampler defined above will provide draws of β[g]

and y∗[g] from p (β, y∗|Y ), g = 1, 2, · · ·, G. Of course, the β[g] are also draws from

p (β|Y ).

• With probit models, we are often interested not in the parameter β, but in the marginal

effects:

∂ Pr (yi = 1|xi, β)

∂xik
=
∂Φ (xiβ)

∂xik
= βkφ (xiβ)
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where φ (·) is the standard normal probability distribution function. As this is a deter-

ministic function of β, we can simulate a draw from the posterior distribution of this

marginal effect as:

β
[g]
k φ

(
xiβ

[g]
)

6 Exercise: Forecasting U.S. Recessions with a Probit

Model

In the zipped collection of files titled “Probit GS.zip” you will find a monthly dataset called

“Recession Forecast Data.xlsx.” This holds data on a variable called NBER, which is a {0, 1}

variable measuring U.S. recession (1) and expansion (0) dates. It also holds four variables

that we will use to predict the NBER variable, which include the Federal Funds Rate, the

S&P500 stock price index, the 10 year Treasury Bond yield, and the 3 month Treasury Bill

yield.

From these four variables we will define three predictor variables:

1. FFR: The level of the Federal Funds Rate

2. SP500 Return: The three month growth rate of the S&P 500 stock price index

3. Term Spread: The difference between the 10 year Treasury Bond and the 3 month

Treasury Bill yields

We will be interested in using these predictor variables to forecast the NBER variable 12

months ahead. The probit model will then be:

NBERt =


1 if y∗t ≥ 0

0 if y∗t < 0

where:
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y∗t+12 = β1 + β2FFRt + β3SP500 Returnt + β4Term Spreadt + εt+12

εt+12 ∼ N (0, 1)

The Matlab files “Probit Recession Forecast.m,” “gen ystar” and “gen beta” are set up to

sample from the joint posterior of β and the latent variable using the Gibbs Sampler. Work

with these files to make sure you understand how they work. Suggested activities include:

1. Estimate this model over the time period from January 1960 to February 2014. Plot

estimates of the posterior density function for β2, β3 and β4. Also plot the posterior

mean of Pr (NBERt = 1|Y ), where t covers the in-sample estimation period.

2. Now plot an estimate of the posterior predictive distribution for the “out-of-sample”

prediction Pr (NBERT+12 = 1|YT ), where T is the end of the sample period, February

2014. So you will be producing a forecast of NBERt, where t = February 2015. Also

report the median of this posterior predictive distribution.

3. Modify the program to mimic a forecaster who is using this model during 2006 and

2007 to forecast recessions 12 months ahead. In particular, estimate the model over

rolling samples starting with January 1960 - January 2007, and ending with January

1960 - December 2007. Report information from the posterior predictive distribution

for each of these samples - you decide what and how you will report this information.

Did this forecasting model forecast the “Great Recession?”
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