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1 Diagnostics for MCMC Samplers

• An MCMC algorithm will return an answer given the inputs you give it. It is thus

useful to have some diagnostic tools to help us feel (more) confident that the algorithm

has done what we wanted it to do.

• The primary question is whether we have taken enough draws, both pre-convergence

(the burn-in period) and post convergence. In the following discussion, assume that

we are sampling from a posterior distribution, p (θ|Y ) using an MCMC sampler. We

have G0 burn-in draws, followed by G post-convergence draws. There are two related

questions here:

– Did we take enough draws to allow the MCMC sampler has converged? (Is G0

big enough?)

– Once convergence has occurred, how many draws are needed to adequately sample

the posterior distribution and estimate objects of interest? (Is G big enough?)

• While these sound like separate questions, they are often closely related. If your

sampler was such that it took a long time to converge to the target density (G0 needed

to be large) then it is likely that it will also take a long time for your sampler to

adequately sample the target density (G needs to be large). A rule of thumb that is

often used in practice is to set G = 10 × G0. This automatically raises G as we get

into situations where G0 is required to be larger.

• Some of the diagnostics we will talk about are primarily designed to evaluate the

adequacy of G0. Others are better thought of as jointly evaluating the adequacy of G0

and G. Before getting to specific diagnostics, it is important to recognize that none

of these diagnostics are foolproof. Indeed, one can come up with examples where all

of these diagnostics raise no red flags, and yet the sampler has either not converged
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or not properly explored the target density post convergence. These examples usually

have to do with multimodal target densities.

• Common MCMC Diagnostics:

1. Trace Plots

A very simple graphical diagnostic is known as a trace plot. Consider an indi-

vidual parameter, θi. A trace plot for θi is a graph where the y-axis shows the

value of θ
[g]
i and the x-axis shows the value of [g]. A sampler that has converged

will yield trace plots that have settled down and are sampling over a stable region,

which will be the support of the posterior density for θi. We would plot trace plots

for our burn-in period. When we see the trace plot settle down this is consistent

with a burn-in period (G0) that is large enough.

2. Running Mean Plot

Another simple graphical diagnostic is a running mean plot, which plots the

sample mean of the draws of θ
[g]
i up through draw g against g. Provided G0 is big

enough, then the sample mean should have settled down by the time G0 is reached

and shouldn’t be changing much as we add new draws beyond that. When we

see the running mean plot for each parameter settle down this is consistent with

a burn-in period (G0) that is large enough.

3. Geweke’s (1992) Statistic

Geweke (1992, Bayesian Statistics) proposes a formal statistic to assess the ade-

quacy of G and G0 based on running means. Suppose we have done G∗ draws and

we want to know if G0 < G∗ is adequate for a burn-in period, leaving G = G∗−G0

availabe to estimate objects of interest about the posterior density. Calculate the

sample mean of θi for the first 10% of the draws and the final 50% of the draws. We

then test whether these came from distributions with the same population mean

by conducting a differences in means test. Geweke’s formal statistic is given in
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the Koop (2003) textbook and is built into many MCMC computer packages. If

we fail to reject the null hypothesis of equal means, then this is consistent with

G0 and G being big enough. If we reject, then this suggests that either our G0 or

our G are not big enough. This test should be repeated for each θi.

4. Running Multiple Chains with Overdispersed Starting Values

One of the more convincing checks that both G0 and G are large enough is to

demonstrate that you obtain similar results in two or more separate runs of a

sampler with starting values that are far from each other. Such starting values

are referred to as “overdispersed.” To compare the results you could compare

posterior statistics computed from each chain (such as the posterior mean, median

and variance). You could also show that trace plots or running mean plots for

the different chains converge to looking the same.

A single run of your sampler, or multiple runs with the same starting values,

leaves leaves open the possibility that your sampling chain is stuck sampling

around the same mode of a multimodal distribution. Running multiple chains

with overdispersed starting values can help guard against this possibility, since

hopefully one of your chains will find this alternative mode.

Note that if some of your chains with overdispersed starting values don’t look

the same as the others, this doesn’t necessarily mean the other chains haven’t

converged. When you are trying over dispersed starting values, you can easily

start the sampler in such a bad place with some starting values that convergence

will take longer for those starting values, or will never practically occur. That

is, it may just be that some of your chains haven’t converged for their starting

values.

5. Autocorrelation Function

Samples taken using an MCMC sampler are not independent. Instead, they will
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display serial correlation. A common diagnostic is to assess how much serial

correlation is present. The j[th] order sample autocorrelation of θi (calculated

over the burn-in period) is:

ri,j =

G0∑
g=j+1

(
θ
[g]
i − θ̄i

)(
θ
[g−j]
i − θ̄i

)
√

G0∑
g=1

(
θ
[g]
i − θ̄i

)2

where θ̄i = 1
G0

G0∑
g=1

θ
[g]
i is the sample mean of θ

[g]
i calculated over the burn-in period.

We can summarize the autocorrelations graphically using the autocorrelation

function, which is a plot of ri,j agains j. We would expect the autocorrelations to

die off as j increases, since the chain is ergodic. However, if the autocorrelations

die off very slowly, then the chain will explore the parameter space very slowly.

This means that more draws will need to be taken to obtain convergence than

would be true if the autocorrelations were lower.

High autocorrelation is an issue not only for convergence, but if these high auto-

correlations continue in the sampler post-convergence, which they likely will, then

this means that you will need to sample more post-convergence as well. Highly

autocorrelated post-convergence draws means that you will have long strings of

“clumpy” observations that are not representative of the unconditional target den-

sity. You will need to sample more to average out these clumpy strings. One way

to assess this in post-convergence samples is to compute the Effective Sample

Size:

ESS =
G

1 + 2
∞∑
k=1

ri,j

where ri,j is the jth order autocorrelation computed over the post-convergence
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sample. We can deal with the ∞ term by setting the limit equal to some large

number such that ri,j is close to zero. The intuition of the effective sample size

is that it tells us how large a sample of independent draws of θi would need to

be to contain the same amount of information about p (θi|Y ) as was contained in

our sample of G autocorrelated draws. As an example, suppose we have taken

1 million draws of a parameter that display autocorrelation consistent with an

AR(1) with AR parameter of 0.99. In this case, these 1 million draws would be

roughly equivalent to 5000 independent draws.

It is sometimes suggested that because of autocorrelation in MCMC draws, we

should not keep every post-convergence draw of θi for posterior inference, but

should instead only use every dth draw, where d is chosen to be large enough to

eliminate the correlation between draws. This process, known as thinning, is

usually not very useful. While it will be succesful in reducing autocorrelation in

the samples of θi, it throws out any useful information that was in the autocorre-

lated draws about the posterior. One place where thinning can be useful is if you

run into storage constraints when saving your sampled draws.

2 Exercise: MCMC Diagnostics from Linear and Non-

linear Regression Models

In the dropbox you will find two zipped collections of files. One is called “Nonlinear Re-

gression MH with Diagnostics.zip.” The other is called ”Linear Regression GS with Diag-

nostics.zip.” These programs implement the nonlinear and linear regression models that we

have used earlier, but add in the regression diagnostics discussed above. Work with these

files to make sure you understand what they do and how they work. Based on these diag-

nostics, what do you think is an appropriate value of G0? Make sure to do some analysis

with multiple runs from overdispersed starting values.
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3 Hierarchical Priors

• Some of the remaining models we will discuss use a special kind of prior distribution

known as a hierarchical prior. We will discuss hierarchical priors in general first before

continuing.

• Consider a k × 1 vector of parameters α = (α1, α2, · · ·, αk)′, where the elements of α

play similar roles in the model. For example, they may all be variances assigned to

individual observations. Or response coefficients to the same variable across individuals

in a panel.

• It is sometimes the case that k will be large relative to the amount of data we have,

which will make estimation of each of these k parameters difficult. When this is true, a

popular approach to setting the prior for the elements of α proceeds as follows: First,

α is assumed to arise from a distribution that depends on a vector of parameters, λ,

that is of much lower dimension than k:

α ∼ p (α|λ)

where we have explicitly denoted that the prior depends on the parameters λ. One

common way of doing this is to have a common prior across all αi. For example, we

might say:

αi ∼ N (µ, V )

• If we stopped here, λ would serve as the vector of hyperparameters. However, we will

instead treat λ as parameters to be estimated. Thus, the next step in setting a prior

is to place a prior on λ, p (λ).

• This prior is what is known as a hierarchical prior. With a hierarchical prior, a prior
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for one unobserved object is determined, through a hierarchy, by the prior for other

unobserved objects. In particular, in this case we have a vector of unknowns, α, as

well as λ. The prior for these parameters is then set as:

p (α, λ) = p (α|λ) p (λ)

At the top of the hierarchy is λ. Our prior for these parameters then completely

determines our prior for α. In particular:

p (α) ∼
∫
λ

p (α|λ) p (λ) dλ

• Note that with a hierarchical prior, the elements of α lose their place as traditional

parameters, and become a stochastic function of other parameters in the model λ. In

other words, we are specifying a model for α as a function of some other parameters.

Thus, this is a way of reducing the number of parameters in the model from k to

the number of parameters in λ, but also maintaining the flexibility that allowing the

elements of α to be different gives us. Of course the cost is that it places structure on

the distribution of the elements of α that might not be consistent with the data. That

is, the α are no longer being estimated as free parameters.

• Hierarchical priors are used frequently to place structure on flexible models with lots

of parameters (e.g. random coefficients models, random effects models, etc.)

• A hierarchical prior was evident in one model we talked about already, namely the

probit model. In this model, the y∗ served as a high dimensional vector of unobserved

objects. We modeled these as dependent on the smaller parameter vector β. Our prior

for β then determined our prior y∗. Here β was at the top of the hierarchy.
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4 Linear Regression with other Error Distributions: A

Mixture of Normals Model

• In our discussion of the linear regression model so far, we have assumed that the vector

of disturbances follows the following multivariate normal distribution:

ε ∼ N
(
0N , h

−1IN
)

which is alternatively written as:

εi ∼ i.i.d.N
(
0, h−1

)
i = 1, 2, · · ·N

• A popular approach in Bayesian econometrics to relax this restriction is to allow εi to

be determined by a mixture of normals distribution:

εi =
M∑
j=1

Dijηij

where ηij ∼ N
(
αj, h

−1
j

)
and Dij = 0 or 1 for j = 1, . . . ,M and

∑M
j=1Dij = 1.

In this setup, the shock εi is drawn from one of M different normal distributions, with

each potentially having a different mean and variance.

• Mixture of normals distributions are popular because a very flexible distribution can

be obtained by mixing together known distributions. This flexible distribution can

then be used to approximate an unknown distribution of interest. Here we will focus

on a mixture of normal distributions, but in principle any distribution can be mixed.

• We can consider the case where Dij is observed or unobserved. In the case where it is

unobserved, then it is unknown which component the ith disturbance term was drawn
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from. In this case, we introduce a probability that Dij = 1, called pj, j = 1, . . . ,M .

In this case, the pj become additional parameters to be estimated.

• Mixture of normal distributions are very flexible, and can be used to effectively ap-

proximate many other distributions. Thus, using a mixture of normals distribution

can be an effective way to approximate an unknown distribution.

• Here we will do a particular example of a mixture of normals distribution in which

there are N mixtures, and Dij is known. This is popular approach for allowing for

heteroskedasticity of an unknown form.

• Consider the linear regression model expressed in matrix form:

Y = Xβ + ε

To capture heteroskedasticity of an unknown form we will assume:

εi = ηi

ηi ∼ N
(
0, h−1i

)

The parameters are then β and h = (h1, h2, · · ·, hN)′.

This is a special case of the mixture of normals distribution in which αj = 0. Such a

mixture is referred to as a scale mixture of normals. Also, in this example, each εi

is assumed to have it’s own normal distribution, so that M = N , and Dij = 1 if i = j

and 0 otherwise.

• We will assume prior independence between β and h1, h2, · · ·, hN :

p (β, h) = p (β)
N∏
i=1

p (hi)
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where:

β ∼ N (µ, V )

For h, we will use a hierarchical prior:

hi ∼ Gamma (m, v)

Here m and v are parameters to be estimated, meaning we need a prior for m and v,

p (m, v).

• With this hierarchical prior, we have changed the model from having N free parameters

hi, to having two free parameters m and v. Again, the benefit of this is that we have

substantially reduced the number of parameters to be estimated. Again, the cost is

that we have placed structure on the distribution of the hi, namely we have modeled

them as arising from the distribution Gamma (m, v).

• To proceed with estimation, we need a prior for m and v. We set these as independent

exponential distributions, with parameters am and av:

p (m, v) = p (m) p (v)

m ∼ exponential (am)

v ∼ exponential (av)

The exponential distribution enforces the restriction that both of these parameters

must be positive. The exponential distribution is a special case of a Gamma distribu-

tion. Other priors could be used without changing the sampling algorithm given below

by much.

• This model can be estimated via a Metropolis-within-Gibbs Sampler with three blocks:

β, h, and {v,m}. Specifically, we will sample iteratively from:

11



1. p (β|m, v, h, Y,X)

2. p (h|β,m, v, Y,X)

3. p (m, v|β, h, Y,X)

Note that in this sampler, the treatment of h is in the spirit of data augmentation

as in the probit model. The N elements of h are treated as unknown objects that are

sampled. These drawn values are then conditioned on in other steps, which will make

those sampling steps easier.

Sampling p (β|m, v, h, Y,X): Using Bayes Rule we have:

p (β|m, v, h, Y,X) ∝ p (Y |β,m, v, h,X) p (β|m, v, h,X)

p (β|m, v, h, Y,X) ∝ p (Y |β,m, v, h,X) p (β)

where:

p (Y |β,m, v, h,X) = (2π)(−N/2)
N∏
i=1

h
1/2
i exp

[
(Y −Xβ)′Σ−1 (Y −Xβ)

]

where Σ−1 = diag (h1, h2, h3, . . . , hN).

Plugging in the equation for the prior and likelihood function, and doing some rear-

ranging, gives us:

β|m, v, h, Y,X ∼ N
(
µ̄, V̄ −1

)
where:

V̄ = V −1 +X ′Σ−1X

µ̄ = V̄ −1
(
V −1µ+X ′Σ−1Y

)
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Sampling p (h|β,m, v, Y,X):

Using Bayes Rule we have:

p (h|β,m, v, Y,X) ∝ p (Y |β,m, v, h,X) p (h|β,m, v,X)

p (h|β,m, v, Y,X) ∝ p (Y |β,m, v, h,X) p (h|m, v)

Plugging in the likelihood function and the equation for the Gamma distribution that

describes p (h|m, v), and doing some rearranging, gives us:

p (h|β,m, v, Y,X) =
N∏
i=1

p (hi|β,m, v, Y,X)

where:

hi|β,m, v, Y ∼ Gamma (m̄i, v̄i)

v̄i = 1 + v

m̄i =
v̄i

ε2i + v
m

where εi is the ith row of Y −Xβ.

Sampling p (m, v|β, h, Y,X):

13



Using Bayes Rule we have:

p (m, v|β, h, Y,X) ∝ p (Y |β,m, v, h,X) p (m, v|β, h,X)

p (m, v|β, h, Y,X) ∝ p (m, v|h)

p (m, v|β, h, Y,X) ∝ p (h|m, v) p (m, v)

p (m, v|β, h, Y,X) ∝ p (h|m, v) p (m) p (v)

Plugging in for these and eliminating the terms that don’t depend on m or v we have:

p (m, v|β, h, Y ) ∝ exp

[
−
(
m

am
+

v

av

)] N∏
i=1

(
2m

v

)− v
2

Γ
(v

2

)−1
h

v−2
2

i exp

[
−hiv

2m

]

This does not correspond to the kernel of a known distribution. However, it can be

sampled using a Metropolis step. Given this equation for the kernel of the posterior,

we can form the acceptance probability for proposals.

5 Exercise: Linear Regression Model with a Scale Mix-

ture of Normals Error Distribution

In the dropbox you will find a zipped collection of files called “Linear Regression Mix-

ture.zip.” This implements the Metropolis-within-Gibbs sampler for the scale mixture of

normals model outlined in the previous section. Work with these files to make sure you

understand what they do. How do your prior on m and v affect the results? Add in some

MCMC diagnostics to the program and assess the convergence of the sampler.
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