
Chapter 18
Turning Points and Classification

Jeremy Piger

AbstractEconomic time-series data is commonly categorized into a discrete number
of persistent regimes. I survey a variety of approaches for real-time prediction of these
regimes and the turning points between them, where these predictions are formed in
a data-rich environment. I place particular emphasis on supervised machine learning
classification techniques that are common to the statistical classification literature,
but have only recently begun to be widely used in economics. I also survey Markov-
switching models, which are often used for unsupervised classification of economic
data. The approaches surveyed are computationally feasible when applied to large
datasets, and the machine learning algorithms employ regularization and cross-
validation to prevent overfitting in the face of many predictors. A subset of the
approaches conduct model selection automatically in forming predictions. I present
an application to real-time identification of U.S. business cycle turning points based
on a wide dataset of 136 macroeconomic and financial time-series.

18.1 Introduction

It is common in studies of economic time series for each calendar time period to
be categorized as belonging to one of some fixed number of recurrent regimes.
For example, months and quarters of macroeconomic time series are separated into
periods of recession and expansion, and time series of equity returns are divided
into bull vs. bear market regimes. Other examples include time series measuring the
banking sector, which can be categorized as belonging to normal vs. crises regimes,
and time series of housing prices, for which some periods might be labeled as arising
from a ‘bubble’ regime. A key feature of these regimes in most economic settings
is that they are thought to be persistent, meaning the probability of each regime
occurring increases once the regime has become active.

Jeremy Piger
Department of Economics, University of Oregon, Eugene, OR 97403, e-mail: jpiger@uoregon.edu

597

jpiger@uoregon.edu

598 Jeremy Piger

In many cases of interest, the regimes are never explicitly observed. Instead,
the historical timing of regimes is inferred from time series of historical economic
data. For example, in the United States, the National Bureau of Economic Research
(NBER) Business Cycle Dating Committee provides a chronology of business cycle
expansion and recession dates developed from study of local minima and maxima
of many individual time series. Because the NBER methodology is not explicitly
formalized, a literature has worked to develop and evaluate formal statistical meth-
ods for establishing the historical dates of economic recessions and expansions in
both U.S. and international data. Examples include Hamilton (1989), Vishwakarma
(1994), Chauvet (1998), Harding and Pagan (2006), Fushing, Chen, Berge, and Jordá
(2010), Berge and Jordá (2011) and Stock and Watson (2014).

In this chapter I am also interested in determining which regime is active based on
information from economic time series. However, the focus is on real-time prediction
rather than historical classification. Specifically, the ultimate goal will be to identify
the active regime toward the end of the observed sample period (nowcasting) or
after the end of the observed sample period (forecasting). Most of the prediction
techniques I consider will take as given a historical categorization of regimes, and
will use this categorization to learn the relationship between predictor variables and
the occurrence of alternative regimes. This learned relationshipwill then be exploited
in order to classify time periods that have not yet been assigned to a regime. I will
also be particularly interested in the ability of alternative prediction techniques to
identify turning points, which mark the transition from one regime to another. When
regimes are persistent, so that there are relatively few turning points in a sample,
it is quite possible for a prediction technique to have good average performance
for identifying regimes, but consistently make errors in identifying regimes around
turning points.

Consistent with the topic of this book, I will place particular emphasis in this
chapter on the case where regime predictions are formed in a data-rich environment.
In our specific context, this environment will be characterized by the availability of a
large number of time-series predictor variables from which we can infer regimes. In
typical language, our predictor dataset will be a ‘wide’ dataset. Such datasets create
issues when building predictive models, since it is difficult to exploit the information
in the dataset without overfitting, which will ultimately lead to poor out-of-sample
predictions.

The problem of regime identification discussed above is an example of a sta-
tistical classification problem, for which there is a substantial literature outside of
economics. I will follow the tradition of that literature and refer to the regimes as
‘classes,’ the task of inferring classes from economic indicators as ‘classification,’
and a particular approach to classification as a ‘classifier.’ Inside of economics,
there is a long history of using parametric models, such as a logit or probit, as
classifiers. For example, many studies have used logit and probit models to predict
U.S. recessions, where the model is estimated over a period for which the NBER
business cycle chronology is known. A small set of examples from this literature
include Estrella andMishkin (1998), Estrella, Rodrigues, and Schich (2003), Kauppi
and Saikkonen (2008), Rudebusch andWilliams (2009) and Fossati (2016). Because

18 Turning Points and Classification 599

they use an available historical indicator of the class to estimate the parameters of
the model, such approaches are an example of what is called a ‘supervised’ classifier
in the statistical classification literature. This is in contrast to ‘unsupervised classi-
fiers,’ which endogenously determine clustering of the data, and thus endogenously
determine the classes. Unsupervised classifiers have also been used for providing
real-time nowcasts and forecasts of U.S. recessions, with the primary example being
the Markov-switching framework of Hamilton (1989). Chauvet (1998) proposes a
dynamic factor model with Markov-switching (DFMS) to identify expansion and
recession phases from a group of coincident indicators, and Chauvet and Hamilton
(2006), Chauvet and Piger (2008) and Camacho, Perez-Quiros, and Poncela (2018)
evaluate the performance of variants of this DFMS model to identify NBER turning
points in real time. An important feature of Markov-switching models is that they
explicitly model the persistence of the regime, by assuming the regime indicator
follows a Markov process.

Recently, a number of authors have applied machine learning techniques com-
monly used outside of economics to classification problems involving time-series
of economic data. As an example, Qi (2001), Ng (2014), Berge (2015), Davig and
Smalter Hall (2016), Garbellano (2016) and Giusto and Piger (2017) have applied
machine learning techniques such as artificial neural networks, boosting, naïve bayes,
and learning vector quantization to forecasting and nowcastingU.S. recessions, while
Ward (2017) used random forests to identify periods of financial crises. These studies
have generally found improvements from the use of the machine learning algorithms
over commonly used alternatives. For example, Berge (2015) finds that the perfor-
mance of boosting algorithms improves on equal weight model averages of recession
forecasts produced by logistic models, while Ward (2017) finds a similar result for
forecasts of financial crises produced by a random forest.

Machine learning algorithms are particularly attractive in data-rich settings. Such
algorithms typically have one or more ‘regularization’ mechanisms that trades off
in-sample fit against model complexity, which can help prevent overfitting. These
algorithms are generally also fit using techniques that explicitly take into account out-
of-sample performance, most typically using cross validation. This aligns the model
fitting stage with the ultimate goal of out-of-sample prediction, which again can
help prevent overfitting. A number of these methods also have built in mechanisms
to conduct model selection jointly with estimation in a fully automated procedure.
This provides a means to target relevant predictors from among a large set of pos-
sible predictors. Finally, these methods are computationally tractable, making them
relatively easy to apply to large datasets.

In this chapter, I survey a variety of popular off-the-shelf supervised machine
learning classification algorithms for the purpose of classifying economic regimes
in real time using time-series data. Each classification technique will be presented
in detail, and its implementation in the R programming language will be discussed.1
Particular emphasis will be placed on the use of these classifiers in data-rich envi-
ronments. I will also present DFMSmodels as an alternative to the machine learning

1 http://www.R-project.org/

http://www.R-project.org/

600 Jeremy Piger

classifiers in some settings. Finally, each of the various classifiers will be evaluated
for their real-time performance in identifying U.S. business cycle turning points from
2000 to 2018.

As discussed above, an existing literature in economics uses parametric logit
and probit models to predict economic regimes. A subset of this literature has
utilized these models in data-rich environments. For example, Owyang, Piger, and
Wall (2015) and Berge (2015) use model averaging techniques with probit and logit
models to utilize the information inwide data sets, while Fossati (2016) uses principal
components to extract factors from wide datasets to use as predictor variables in
probit models. I will not cover these techniques here, instead opting to provide a
resource for machine learning methods, which hold great promise, but have received
less attention in the literature to date.

The remainder of this chapter proceeds as follows. Section 18.2 will formalize
the forecasting problem we are interested in and describe metrics for evaluating class
forecasts. Section 18.3 will then survey the details of a variety of supervised machine
learning classifiers and their implementation, while section 18.4 will present details
of DFMS models for the purpose of classification. Section 18.5 will present an
application to real-time nowcasting of U.S. business cycle turning points. Section
18.6 concludes.

18.2 The Forecasting Problem

In this section I lay out the forecasting problem of interest, as well as establish
notation used for the remainder of this chapter. I also describe some features of
economic data that should be recognized when conducting a classification exercise.
Finally, I detail common approaches to evaluating the quality of class predictions.

18.2.1 Real-time classification

Our task is to develop a prediction of whether an economic entity in period t + h is
(or will be) in each of a discrete number (C) of classes. Define a discrete variable
St+h ∈ {1, . . . ,C} that indicates the active class in period t + h. It will also be useful
to define C binary variables Sc

t+h
= I (St+h = c), where I () ∈ {0,1} is an indicator

function, and c = 1, . . . ,C.
Assume that we have a set of N predictors to draw inference on St+h . Collect these

predictors measured at time t in the vector Xt , with an individual variable inside this
vector labeled Xj ,t , j = 1, . . . ,N . Note that Xt can include both contemporaneous
values of variables as well as lags. I define a classifier as Ŝc

t+h
(Xt), where this

classifier produces a prediction of Sc
t+h

conditional on Xt . These predictions will
take the form of conditional probabilities of the form Pr

(
St+h = c |Xt

)
. Note that

a user of these predictions may additionally be interested in binary predictions of

18 Turning Points and Classification 601

Sc
t+h

. To generate a binary prediction we would combine our classifier Ŝc
t+h
(Xt)

with a rule, L (), such that L
(
Ŝc
t+h
(Xt)

)
∈ {0,1}. Finally, assume we have available

T observations on Xt and St+h , denoted as {Xt,St+h}Tt=1. I will refer to this in-
sample period as the ‘training sample.’ This training sample is used to determine
the parameters of the classifier, and I refer to this process as ‘training’ the classifier.
Once trained, a classifier can then be used to forecast Sc

t+h
outside of the training

sample. Specifically, given an XT+q , we can predict Sc
T+q+h

using Ŝc
T+q+h

(
XT+q

)
or

L
(
Ŝc
T+q+h

(
XT+q

))
.

I will also be interested in the prediction of turning points, which mark the
transition from one class to another. The timely identification of turning points in
economic applications is often of great importance, as knowledge that a turning
point has already occurred, or will in the future, can lead to changes in behavior
on the part of firms, consumers, and policy makers. As an example, more timely
information suggesting the macroeconomy has entered a recession phase should lead
to quicker action on the part of monetary and fiscal policymakers, and ultimately
increased mitigation of the effects of the recession. In order to predict turning points
we will require another rule to convert sequences of Ŝc

t+h
(Xt) into turning point

predictions. Of course, how cautious one is in converting probabilities to turning
point predictions is determined by the user’s loss function, and in particular the
relative aversion to false positives. In the application presented in Section 18.5, I
will explore the real-time performance of a specific strategy for nowcasting turning
points between expansion and recession phases in the macroeconomy.

18.2.2 Classification and economic data

As is clear from the discussion above, we are interested in this chapter in classification
in the context of time-series data. This is in contrast to much of the broader clas-
sification literature, which is primarily focused on classification in cross-sectional
datasets, where the class is reasonably thought of as independent across observa-
tions. In most economic time series, the relevant class is instead characterized by
time-series persistence, such that a class is more likely to continue if it is already
operational than if it isn’t. In this chapter, I survey a variety of off-the-shelf ma-
chine learning classifiers, most of which do not explicitly model persistence in the
class indicator. In cases where the forecast horizon h is reasonably long, ignoring
persistence of the class is not likely to be an issue, as the dependence of the future
class on the current class will have dissipated. However, in short horizon cases, such
as that considered in the application presented in Section 18.5, this persistence is
more likely to be important. To incorporate persistence into the machine learning
classifiers’ predictions, I follow Giusto and Piger (2017) and allow for lagged values

602 Jeremy Piger

to enter the Xt vector. Lagged predictor variables will provide information about
lagged classes, which should improve classification of future classes.2

Economic data is often characterized by ‘ragged edges,’ meaning that some values
of the predictor variables are missing in the out-of-sample period (Camacho et al.
(2018)). This generally occurs due to differences in the timing of release dates
for different indicators, which can leave us with only incomplete observation of
the vector XT+j . There are a variety of approaches that one can take to deal with
these missing observations when producing out-of-sample predictions. A simple,
yet effective, approach is to use k nearest neighbors (kNN) imputation to impute the
missing observations. This approach imputes the missing variables based on fully
observed vectors from the training sample that are similar on the dimension of the
non-missing observations. kNN imputation is discussed in more detail in Section
18.3.3.

18.2.3 Metrics for evaluating class forecasts

In this section I discussmetrics for evaluating the performance of classifiers. Suppose
we have a set of T̃ class indicators, Sc

t+h
, and associated classifier predictions,

Ŝc
t+h
(Xt), where t ∈ Θ. Since Ŝc

t+h
(Xt) is interpreted as a probability, an obvious

metric to evaluate these predictions is Brier’s Quadratic Probability Score (QPS),
which is the analogue of the traditional mean squared error for discrete data:

QPS =
1

T̃

∑
t∈Θ

C∑
c=1

(Sc
t+h − Ŝc

t+h (Xt))
2

The QPS is bounded between 0 and 2, with smaller values indicating better classifi-
cation ability.

As discussed above, in addition to predictions that are in the form of probabilities,
we are often interested in binary predictions produced as L

(
Ŝc
t+h
(Xt)

)
. In this case,

there are a variety of commonly used metrics to assess the accuracy of classifiers. In
describing these, it is useful to restrict our discussion to the two class case, so that
c ∈ {1,2}.3 Also, without loss of generality, label c = 1 as the ‘positive’ class and
c = 2 as the ‘negative’ class. We can then define a confusion matrix:

2 When converting Ŝc
t+h
(Xt) into turning point predictions, one might also consider conversion

rules that acknowledge class persistence. For example, multiple periods of elevated class probabil-
ities could be required before a turning point into that class is predicted.
3 Generalizations of these metrics to the multi-class case generally proceed by considering each
class against all other classes in order to mimic a two class problem.

18 Turning Points and Classification 603

Pr
ed
ic
te
d

Actual

positive negative

positive TP FP

negative FN T N

where TP is the number of true positives, defined as the number of instances of
c = 1 that were classified correctly as c = 1, and FP indicates the number of false
positives, defined as the instances of c = 2 that were classified incorrectly as c = 1.
FN and T N are defined similarly.

A number of metrics of classifier performance can then be constructed from this
confusion matrix. The first is Accuracy, which simply measures the proportion of
periods that are classified correctly:

Accuracy =
TP + T N

TP + T N + FP + FN
Of course, Accuracy is strongly affected by the extent to which classes are balanced
in the sample period. If one class dominates the period under consideration, then it
is easy to have very high accuracy by simply always forecasting that class with high
probability. In many economic applications, classes are strongly unbalanced, and as
a result the use of Accuracy alone to validate a classifier would not be recommended.
Using the confusion matrix we can instead define accuracy metrics for each class.
Specifically, the true positive rate, or TPR, gives us the proportion of instances of
c = 1 that were classified correctly:

TPR =
TP

TP + FN
while the true negative rate, or T NR, gives us the proportion of instances of c = 2
that were classified correctly:

T NR =
T N

T N + FP
It is common to express the information in T NR as the false positive rate, which is
given by FPR = 1 − T NR.4

It is clear that which of these metrics is of primary focus depends on the relative
preferences of the user for true positives vs. false positives. Also, it should be

4 In the classification literature, TPR is referred to as the sensitivity and TNR as the specificity.

604 Jeremy Piger

remembered that the confusion matrix, and the metrics defined from its contents, are
dependent not just on the classifier Ŝc

t+h
(Xt), but also on the rule L used to convert

this classifier to binary outcomes. In many cases, these rules are simply of the form:

L
(
Ŝc
t+h (Xt)

)
=

{
1 if Ŝc

t+h
(Xt) > d

2 if Ŝc
t+h
(Xt) ≤ d

such that c = 1 is predicted if Ŝc
t+h
(Xt) rises above the threshold d, and 0 ≤ d ≤ 1

since our classifier is a probability. A useful summary of the performance of a
classifier is provided by the ‘receiver operator characteristic’ (ROC) curve, which is
a plot of combinations of TPR (y-axis) and FPR (x-axis), where the value of d is
varied to generate the plot. When d = 1 both TPR and FPR are zero, since both
TP and FP are zero if class c = 1 is never predicted. Also, d = 0 will generate
TPR and FPR that are both one, since FN and T N will be zero if class c = 1 is
always predicted. Thus, the ROC curve will always rise from the origin to the (1,1)
ordinate. A classifier for which Xt provides no information regarding Sc

t+h
, and is

thus constant, will haveTPR = FPR, and the ROC curve will lie along the 45 degree
line. Classifiers for which Xt does provide useful information will have a ROC curve
that lies above the 45 degree line. Figure 18.1 provides an example of such a ROC
curve. Finally, suppose we have a perfect classifier, such that there exists a value of
d = d∗ where TPR = 1 and FPR = 0. For all values of d ≥ d∗, the ROC curve will
be a vertical line on the y-axis from (0,0) to (0,1), where for values of d ≤ d∗, the
ROC curve will lie on a horizontal line from (0,1) to (1,1).

As discussed in Berge and Jordá (2011), the area under the ROC curve (AUROC)
can be a useful measure of the classification ability of a classifier. TheAUROC for the
45 degree line, which is the ROC curve for the classifier when Xt has no predictive
ability, is 0.5. The AUROC for a perfect classifier is 1. In practice, the AUROC
will lie in between these extremes, with larger values indicating better classification
ability.

In the application presented in Section 18.5, I consider both the QPS and the
AUROC to assess out-of-sample classification ability. I will also evaluate the ability
of these classifiers to forecast turning points. In this case, given the relative rarity
of turning points in most economic applications, it seems fruitful to evaluate per-
formance through case studies of the individual turning points. Examples of such a
case study will be provided in Section 18.5.

18.3 Machine Learning Approaches to Supervised Classification

In this section I will survey a variety of off-the-shelf supervised machine learning
classifiers. The classifiers I survey have varying levels of suitability for data-rich
environments. For all the classifiers considered, application to datasets with many
predictors is computationally feasible. Some of the classifiers also have built in
mechanisms to identify relevant predictors, while others use all predictor variables

18 Turning Points and Classification 605

Fig. 18.1 Example Receiver Operator Characteristic (ROC) Curve

equally. Where relevant, I will discuss the wide-data attributes of each classifier
below.

All of the classifiers that I discuss in this section involve various specification
choices that must be set in order to implement the classifier. In some cases, these
choices involve setting the value of a parameter, while in others they may involve the
choice between two ormore variants of the classifier. Following themachine learning
literature, I refer to these various choices as tuning parameters. While these tuning
parameters can be set a priori, in this chapter I instead implement the commonly
used procedure of cross validation to set the tuning parameters automatically in a
data-based way. In the following subsection I briefly describe cross validation, before
moving to discussions of the individual classifiers.

18.3.1 Cross validation

The central idea of cross validation is to randomly partition the full training sample
into a new training sample and a (non-overlapping) evaluation sample. For specific
values of the tuning parameters, the classifier is trained on the partition of data
labeled the training sample, and is then used to classify the partition labeled the
evaluation sample. The performance of the classifier on the evaluation sample is
recorded for each point in a grid for the tuning parameters, and the values of the

606 Jeremy Piger

tuning parameters with the best performance classifying the evaluation sample is
selected. These optimal values for the tuning parameters are then used to train
the classifier over the full training sample. Performance on the evaluation sample is
generally evaluated using a scalarmetric for classification performance. For example,
in the application presented in Section 18.5, I use the AUROC for this purpose.

In k-fold cross validation, k of these partitions (or ‘folds’) are randomly generated,
and the performance of the classifier for specific tuning parameter values is averaged
across the k evaluation samples. A common value for k, which is the default in
many software implementations of k-fold cross validation, is k = 10. One can
increase robustness by repeating k-fold cross validation a number of times, and
averaging performance across these repeats. This is known as repeated k-fold cross
validation. Finally, in settings with strongly unbalanced classes, which is common in
economic applications, it is typical to sample the k partitions such that they reflect
the percentage of classes in the full training sample. In this case, the procedure is
labeled stratified k-fold cross validation.

Cross validation is an attractive approach for setting tuning parameters because
it aligns the final objective, good out-of-sample forecasts, with the objective used to
determine tuning parameters. In other words, tuning parameters are given a value
based on the ability of the classifier to produce good out-of-sample forecasts. This
is in contrast to traditional estimation, which sets parameters based on the in-sample
fit of the model. Cross validation is overwhelmingly used in machine learning al-
gorithms for classification, and it can be easily implemented for a wide variety of
classifiers using the caret package in R.

18.3.2 Naïve Bayes

We begin our survey of machine learning approaches to supervised classification
with the Naïve Bayes (NB) classifier. NB is a supervised classification approach
that produces a posterior probability for each class based on application of Bayes
Rule. NB simplifies the classification problem considerably by assuming that inside
of each class, the individual variables in the vector Xt are independent of each
other. This conditional independence is a strong assumption, and would be expected
to be routinely violated in economic datasets. Indeed, it would be expected to be
violated in most datasets, which explains the ‘naïve’ moniker. However, despite this
strong assumption, the NB algorithm works surprisingly well in practice. This is
primarily because what is generally needed for classification is not exact posterior
probabilities of the class, but only reasonably accurate approximate rank orderings
of probabilities. Two recent applications in economics include Garbellano (2016),
who used a NB classifier to nowcast U.S. recessions and expansions in real time,
and Davig and Smalter Hall (2016), who used the NB classifier, including some
extensions, to predict U.S. business cycle turning points.

To describe the NB classifier I begin with Bayes rule:

18 Turning Points and Classification 607

Pr
(
St+h = c |Xt

)
∝ f

(
Xt |St+h = c

)
Pr (St+h = c) . (18.1)

In words, Bayes Rule tells us that the posterior probability that St+h is in phase c is
proportional to the probability density for Xt conditional on St+h being in phase c
multiplied by the unconditional (prior) probability that St+h is in phase c.

The primary difficulty in operationalizing (18.1) is specifying a model for Xt

to produce f
(
Xt |St+h = c

)
. The NB approach simplifies this task considerably by

assuming that each variable in Xt is independent of each other variable in Xt ,
conditional on St+h = c. This implies that the conditional data density can be
factored as follows:

f
(
Xt |St+h = c

)
=

N∏
j=1

fj
(
Xj ,t |St+h = c

)
,

where Xj ,t is one of the variables in Xt . Equation (18.1) then becomes:

Pr
(
St+h = c |Xt

)
∝

N∏
j=1

fj
(
Xj ,t |St+h = c

) Pr (St+h = c) . (18.2)

How do we set fj
(
Xj ,t |St+h = c

)
? One approach is to assume a parametric distri-

bution, where a typical choice in the case of continuous Xt is the normal distribution:

Xj ,t |St+h = c ∼ N
(
µj ,c, σ

2
j ,c

)
,

where µj ,c and σ2
j ,c are estimated from the training sample. Alternatively, we could

evaluate fj
(
Xj ,t |St+h = c

)
non-parametrically using a kernel density estimator fit

to the training sample. In our application of NB presented in Section 18.5, I treat
the choice of whether to use a normal distribution or a kernel density estimate as a
tuning parameter.

Finally, equation (18.2) produces an object that is proportional to the conditional
probability Pr

(
St+h = c |Xt

)
. We can recover this conditional probability exactly as:

Pr
(
St+h = c |Xt

)
=

[
N∏
j=1

fj
(
Xj ,t |St+h = c

)]
Pr (St+h = c)

C∑
c=1

©«
[
N∏
j=1

fj
(
Xj ,t |St+h = c

)]
Pr (St+h = c)ª®¬

.

Our NB classifier is then Ŝc
t+h
(Xt) = Pr

(
St+h = c |Xt

)
.

The NB classifier has a number of advantages. First, it is intuitive and inter-
pretable, directly producing posterior probabilities of each class. Second, it is easily
scalable to large numbers of predictor variables, requiring a number of parameters
linear to the number of predictors. Third, since only univariate properties of a pre-
dictor in each class are estimated, the classifier can be implemented with relatively

608 Jeremy Piger

small amounts of training data. Finally, ignoring cross-variable relationships guards
against overfitting the training sample data.

A primary drawback of the NB approach is that it ignores cross-variable rela-
tionships potentially valuable for classification. Of course, this drawback is also the
source of the advantages mentioned above. Another drawback relates to the appli-
cation of NB in data-rich settings. As equation (18.2) makes clear, all predictors are
given equal weight in determining the posterior probability of a class. As a result, the
performance of the classifier can deteriorate if there are a large number of irrelevant
predictors, the probability of which will increase in data-rich settings.

Naïve Bayes classification can be implemented inR via thecaret package, using
the naive_bayes method. Implementation involves two tuning parameters. The
first is usekernel, which indicates whether a Gaussian density or a kernel density
estimator is used to approximate fj

(
Xj ,t |St+h = c

)
. The second is adjust, which

is a parameter indicating the size of the bandwidth in the kernel density estimator.

18.3.3 k-nearest neighbors

The k-nearest neighbor (kNN) algorithm is among the simplest of supervised clas-
sification techniques. Suppose that for predictor data Xt , we define a neighborhood,
labeled Rk (Xt), that consists of the k closest points to Xt in the training sample (not
including Xt itself). Our class prediction for St+h = c is then simply the proportion
of points in the region belonging to class c:

Ŝc
t+h (Xt) =

1

k

∑
Xi ∈Rk (Xt)

I (Si+h = c)

In other words, to predict Sc
t+h

, we find the k values of X that are closest to Xt , and
compute the proportion of these that correspond to class c.

To complete this classifier we must specify a measure of ‘closeness.’ The most
commonly used metric is Euclidean distance:

d(Xt,Xi) =

√√√ N∑
j=1

(Xj ,t − Xj ,i)
2

Other distance metrics are of course possible. The region Rk (Xt) can also be defined
continuously, so that training sample observations are not simply in vs. out of Rk (Xt),
but have declining influence as they move farther away from Xt .

kNN classifiers are simple to understand, and can often provide a powerful clas-
sification tool, particularly in cases where Xt is of low dimension. However, kNN is
adversely affected in cases where the Xt vector contains many irrelevant predictors,
as themetric defining closeness is affected by all predictors, irregardless of their clas-
sification ability. Of course, the likelihood of containing many irrelevant predictors
increases with larger datasets, and as a result kNN classification is not a commonly

18 Turning Points and Classification 609

used classifier when there are a large number of predictors. Other approaches, such
as the tree-based methods described below, are preferred in data-rich settings, in that
they can automatically identify relevant predictors.

As was discussed in Section 18.2.2, in many applications some values of the
predictor variables will be missing in the out-of-sample period. It is also possible
to have missing values in the training sample. A simple and effective approach to
handle missing values is to apply a kNN type procedure to impute the missing values.
Specifically, suppose we have a vector Xt that is only partially observed. Segment
this vector into X∗t and X̃t , where X∗t holds the N∗ variables that are observed and
X̃t holds the N − N∗ variables that are not observed. Define a neighborhood, labeled
Rk

(
X∗t

)
, that consists of the k closest points to X∗t over the portion of the training

sample for which there are no missing values. Closeness can again be defined in
terms of the Euclidean metric:

d(X∗t ,X
∗
i) =

√√√ N∗∑
j=1

(X∗j ,t − X∗j ,i)
2

We then impute the missing variable values contained in X̃t using the mean of those
same variables in Rk

(
X∗t

)
:

X̃ imputed
t =

1

k

∑
Xi ∈Rk (X∗t)

X̃i

kNN classification can be implemented in R via the caret package, using the
knnmethod. The knnmethod involves a single tuning parameter, k, which indicates
the value of k. Also, when implementing any machine learning classification method
inR using thecaret package, kNN imputation can be used to replacemissing values
via the preProc argument to the train function.

18.3.4 Learning vector quantization

Learning Vector Quantization (LVQ) is a classifier that forms predictions on the
basis of the closeness of Xt to some key points in the predictor space. In this
sense it is like kNN, in that it generates predictions based on a nearest-neighbor
strategy. However, unlike kNN, these key points are not collections of training
sample data points, but instead are endogenously learned from the training sample
data. LVQ is widely used in real-time classification problems in a number of fields
and applications, and was used in the economics literature by Giusto and Piger
(2017) to identify U.S. business cycle turning points in real time. LVQmethods were
developed by Tuevo Kohonen and are described in detail in Kohonen (2001).

To describe LVQ it is useful to begin with Vector Quantization (VQ). A VQ
classifier relies on the definition of certain key points, called codebook vectors,
defined in the predictor space. Each codebook vector is assigned to a class, and

610 Jeremy Piger

there can be more than one codebook vector per class. We would generally have
far fewer codebook vectors than data vectors, implying that a codebook vector
provides representation for a group of training sample data vectors. In other words,
the codebook vectors quantize the salient features of the predictor data. Once these
codebook vectors are singled out, data is classified via a majority vote of the nearest
group of k codebook vectors in the Euclidean metric.

How is the location of each codebook vector established? An LVQ algorithm
is an adaptive learning algorithm in which the locations of the codebook vectors
are determined through adjustments of decreasing magnitude. Denote our codebook
vectors as vi ∈ RN , i = 1, . . . ,V , let g = 1,2, . . . ,G denote iterations of the algorithm,
and let αg be a decreasing geometric sequence where 0 < α < 1. Given the initial
location of the codebook vectors, the LVQ algorithm makes adjustments to their
location as described in Algorithm 15:

Algorithm 15 Learning Vector Quantization (Kohonen (2001))
Initialize v0i , i = 1, . . . ,V
for g = 1 to G do.

for t = 1 to T do.
Identify the single codebook vector vg−1∗ closest to Xt in the Euclidean metric.
Adjust the location of vg∗ according to:

v
g
∗ = v

g−1
∗ + αg(Xt − v

g−1
∗) if Xt and v

g−1
∗ belong to the same class

v
g
∗ = v

g−1
∗ − αg(Xt − v

g−1
∗) otherwise

end for
end for

This LVQ algorithm is very simple. A data vector is considered, and its nearest
codebook vector is identified. If the class attached to this codebook vector agrees
with the actual classification of the data vector, its location is moved closer to the data
vector. If the selected codebook vector does not classify the data vector correctly,
then it is moved farther from the data vector. These adjustments are made in a simple
linear fashion. These calculations are repeated for each data vector in the data set.
When the data has all been used, a new iteration is started where the weight αg,
which controls the size of the adjustment to the codebook vectors, is decreased. This
continues for G iterations, with the final codebook vectors given by vGi , i = 1, . . . ,V .

Once the final codebook vectors are established, the LVQ classifier produces a
prediction, Ŝt+h (Xt), via a majority voting strategy. First, we identify the k closest
codebook vectors to Xt in the Euclidean metric. Second, the predicted class for Xt

is set equal to the majority class of these k codebook vectors. Denote this majority
class as c∗. Then:

Ŝc
t+h (Xt) = 1, if c = c∗

Ŝc
t+h (Xt) = 0, otherwise

18 Turning Points and Classification 611

Here I have laid out the basic LVQ algorithm, which has been shown to work
well in many practical applications. Various modifications to this algorithm have
been proposed, which may improve classification ability in some contexts. These
include LVQ with nonlinear updating rules, as in the Generalized LVQ algorithm
of Sato and Yamada (1995), as well as LVQ employed with alternatives to the
Euclidean measure of distance, such as the Generalized Relevance LVQ of Hammer
and Villmann (2002). The latter allows for adaptive weighting of data series in the
dimensions most helpful for classification, and may be particularly useful when
applying LVQ to large datasets.

LVQ classification can be implemented in R via the caret package using the
lvqmethod. The lvqmethod has two tuning parameters. The first is the number of
codebook vectors to use in creating the final classification, k, and is labeled k. The
second is the total number of codebook vectorsV , and is labeledsize. To implement
the classifier, one must also set the values of G and α. In the lvq method, G is set
endogenously to ensure convergence of the codebook vectors. The default value of
α in the lvq method is 0.3. Kohonen (2001) argues that classification results from
LVQ should be largely invariant to the choice of alternative values of α provided
that αg → 0 as g → ∞, which ensures that the size of codebook vector updates
eventually converge to zero. Giusto and Piger (2017) verified this insensitivity in
their application of LVQ to identifying business cycle turning points.

The LVQ algorithm requires an initialization of the codebook vectors. This ini-
tialization can have effects on the resulting class prediction, as the final placement
of the codebook vectors in an LVQ algorithm is not invariant to initialization. A
simple approach, which I follow in the application, is to allow all classes to have
the same number of codebook vectors, and initialize the codebook vectors attached
to each class with random draws of Xt vectors from training sample observations
corresponding to each class.

18.3.5 Classification trees

A number of commonly used classification techniques are based on classification
trees. I will discuss several of these approaches in subsequent sections, each of which
uses aggregations of multiple classification trees to generate predictions. Before
delving into these techniques, in this section I describe the single classification trees
upon which they are built.

A classification tree is an intuitive, non-parametric, procedure that approaches
classification by partitioning the predictor variable space into non-overlapping re-
gions. These regions are created according to a conjunction of binary conditions. As
an example, in a case with two predictor variables, one of the regions might be of the
form {Xt |X1,t ≥ τ1,X2,t < τ2}. The partitions are established in such a way so as to
effectively isolate alternative classes in the training sample. For example, the region
mentioned above might have been chosen because it corresponds to cases where

612 Jeremy Piger

St+h is usually equal to c. To generate predictions, the classification tree would then
place a high probability on St+h = c if Xt fell in this region.

How specifically are the partitions established using a training sample? Here I
will describe a popular training algorithm for a classification tree, namely the clas-
sification and regression tree (CART). CART proceeds by recursively partitioning
the training sample through a series of binary splits of the predictor data. Each new
partition, or split, segments a region that was previously defined by the earlier splits.
The new split is determined by one of the predictor variables, labeled the ‘split
variable,’ based on a binary condition of the form Xj ,t < τ and Xj ,t ≥ τ, where
both j and τ can differ across splits. The totality of these recursive splits partition
the sample space into M non-overlapping regions, labeled A∗m, m = 1, . . . ,M , where
there are T∗m training sample observations in each region. For all Xt that are in region
A∗m, the prediction for St+h is a constant equal to the within-region sample proportion
of class c:

Pc
A∗m
=

1

T∗m

∑
Xt ∈A

∗
m

I(St+h = c) (18.3)

The CART classifier is then:

Ŝc
t+h (Xt) =

M∑
m=1

Pc
A∗m

I
(
Xt ∈ A∗m

)
(18.4)

How is the recursive partitioning implemented to arrive at the regions A∗m? Sup-
pose that at a given step in the recursion, we have a region defined by the totality
of the previous splits. In the language of decision trees, this region is called a
‘node.’ Further, assume this node has not itself yet been segmented into subregions.
I refer to such a node as an ‘unsplit node’ and label this unsplit node generically
as A. For a given j and τ j we then segment the data in this region according to
{Xt |Xj ,t < τ j,Xt ∈ A} and {Xt |Xj ,t ≥ τ j,Xt ∈ A}, which splits the data in this
node into two non-overlapping regions, labelled AL and AR respectively. In these
regions, there are TL and TR training sample observations. In order to determine
the splitting variable, j, and the split threshold, τ j , we scan through all pairs { j, τ j},
where j = 1, . . . N and τ j ∈ T A, j , to find the values that maximize a measure of
the homogeneity of class outcomes inside of AL and AR.5 Although a variety of
measures of homogeneity are possible, a common choice is the Gini impurity:

5 In a CART classification tree, TA, j is a discrete set of all non-equivalent values for τ j , which
is simply the set of midpoints of the ordered values for Xj ,t in the training sample observations
relevant for node A.

18 Turning Points and Classification 613

GL =

C∑
c=1

Pc
AL (1 − Pc

AL)

GR =

C∑
c=1

Pc
AR (1 − Pc

AR)

The Gini impurity is bounded between zero and one, where a value of zero indicates
a ‘pure’ region where only one class is present. Higher values of the Gini impurity
indicate greater class diversity. The average Gini impurity for the two new proposed
regions is:

G =
TL

TL + TR
GL +

TR

TL + TR
GR (18.5)

The split point j and split threshold τ j are then chosen to create regions AL and AR

that minimize the average Gini impurity.
This procedure is repeated for other unsplit nodes of the tree, with each additional

split creating two new unsplit nodes. By continuing this process recursively, the
sample space is divided into smaller and smaller regions. One could allow the
recursion to run until we are left with only pure unsplit nodes. A more common
choice in practice is to stop splitting nodes when any newly created region would
contain a number of observations below some predefined minimum. This minimum
number of observations per region is a tuning parameter of the classification tree.
Whatever approach is taken, when we arrive at an unsplit node that is not going to
be split further, this node becomes one of our final regions A∗m. In the language of
decision trees, this final unsplit node is referred to as a ‘leaf.’ Algorithm 16 provides
a description of the CART classification tree.

Algorithm 16A Single CART Classification Tree (Breiman, Friedman, Olshen, and
Stone (1984))
1: Initialize a single unsplit node to contain the full training sample
2: for All unsplit nodes Au with total observations > threshold do
3: for j = 1 to N and τ j ∈ TAu , j do
4: Create non-overlapping regions AL

u = {Xt |Xj ,t < τ
j , Xt ∈ Au } and

AR
u = {Xt |Xj ,t ≥ τ

j , Xt ∈ Au } and calculate Ḡ as in (18.5).
5: end for
6: Select j and τ j to minimize Ḡ and create the associated nodes AL

u and AR
u .

7: Update the set of unsplit nodes to include AL
u and AR

u .
8: end for
9: For final leaf nodes, A∗m , form Pc

A∗m
as in (18.3), for c = 1, . . . ,C and m = 1, . . .M

10: Form the CART classification tree classifier: Ŝc
t+h
(Xt) as in (18.4).

Classification trees have many advantages. They are simple to understand, require
no parametric modeling assumptions, and are flexible enough to capture complicated
nonlinear and discontinuous relationships between the predictor variables and class
indicator. Also, the recursive partitioning algorithm described above scales easily to

614 Jeremy Piger

large datasets, making classification trees attractive in this setting. Finally, unlike the
classifierswe have encountered to this point, a CART classification tree automatically
conducts model selection in the process of producing a prediction. Specifically, a
variablemay never be used as a splitting variable, which leaves it unused in producing
a prediction by the classifier. Likewise, another variablemaybe usedmultiple times as
a splitting variable. These differences result in varying levels of variable importance
in a CART classifier. Hastie, Tibshirani, and Friedman (2009) detail a measure of
variable importance that can be produced from a CART tree.

CART trees have one significant disadvantage. The sequence of binary splits, and
the path dependence this produces, generally produces a high variance forecast. That
is, small changes in the training sample can produce very different classification trees
and associated predictions. As a result, a number of procedures exist that attempt to
retain the benefits of classification trees, while reducing variance. We turn to these
procedures next.

18.3.6 Bagging, random forests, and extremely randomized trees

In this section we describe bagged classification trees, their close variant, the
random forest, and a modification to the random forest known as extremely ran-
domized trees. Each of these approaches average the predicted classification coming
frommany classification trees. This allows us to harness the advantages of tree-based
methods, while at the same time reducing the variance of the tree-based predictions
through averaging. Random forests have been used to identify turning points in eco-
nomic data byWard (2017), who uses random forests to identify episodes of financial
crises, and Garbellano (2016), who uses random forests to nowcast U.S. recession
episodes. Bagging and random forests are discussed in more detail in Chapter 13 of
this book.

We begin with bootstrap aggregated (bagged) classification trees, which were
introduced in Breiman (1996). Bagged classification trees work by training a large
number, B, of CART classification trees and then averaging the class predictions
from each of these trees to arrive at a final class prediction. The trees are different
because each is trained on a bootstrap training sample of size T , which is created
by sampling {Xt,St+h} with replacement from the full training sample. Each tree
produces a class prediction, which I label Ŝc

b,t+h
(Xt), b = 1, . . . ,B. The bagged

classifier is then the simple average of the B CART class predictions:

Ŝc
t+h (Xt) =

1

B

B∑
b=1

Ŝc
b,t+h (Xt) (18.6)

Bagged classification trees are a variance reduction technique that can give substan-
tial gains in accuracy over individual classification trees. As discussed in Breiman
(1996), a key determinant of the potential benefits of bagging is the variance of the

18 Turning Points and Classification 615

individual classification trees across alternative training samples. All else equal, the
higher is this variance, the more potential benefit there is from bagging.

As discussed in Breiman (2001), the extent of the variance improvement also
depends on the amount of correlation across the individual classification trees that
constitute the bagged classification tree, with higher correlation generating lower
variance improvements. This correlation could be significant, as the single classifi-
cation trees used in bagging are trained on overlapping bootstrap training samples.
As a result, modifications to the bagged classification tree have been developed that
attempt to reduce the correlation across trees, without substantially increasing the
bias of the individual classification trees. The most well know of these is the random
forest (RF), originally developed in Breiman (2001).6

An RF classifier attempts to lower the correlation across trees by adding another
layer of randomness into the training of individual classification trees. As with a
bagged classification tree, each single classification tree is trained on a bootstrap
training sample. However, when training this tree, rather than search over the entire
set of predictors j = 1, . . . ,N for the best splitting variable at each node, we instead
randomly chooseQ << N predictor variables at each node, and search only over these
variables for the splitting variable. This procedure is repeated to train B individual
classification trees, and the random forest classifier is produced by averaging these
classification trees as in equation (18.6). Algorithm 17 provides a description of the
RF classifier.

Algorithm 17 Random Forest Classifier (Breiman (2001))
1: for b = 1 to B do
2: Form a bootstrap training sample by sampling {Xt , St+h } with replacement

T times from the training sample observations.
3: Initialize a single unsplit node to contain the full bootstrap training sample
4: for All unsplit nodes Au with total observations > threshold do
5: Randomly select Q predictor variables as possible splitting variables. Denote

these predictor variables at time t as X̃t

6: for Xj ,t ∈ X̃t and τ j ∈ TAu , j do
7: Create two non-overlapping regions AL

u = {Xt |Xj ,t < τ
j , Xt ∈ Au } and

AR = {Xt |Xj ,t ≥ τ
j , Xt ∈ Au } and calculate Ḡ as in (18.5).

8: end for
9: Select j and τ j to minimize Ḡ and create the associated nodes AL

u and AR
u .

10: Update the set of unsplit nodes to include AL
u and AR

u

11: end for
12: For final leaf nodes, A∗m , form Pc

A∗m
as in (18.3), for c = 1, . . . ,C and m = 1, . . .M

13: Form the single tree classifier: Ŝc
b ,t+h

(Xt) as in (18.4).
14: end for
15: Form the Random Forest classifier: Ŝc

t+h
(Xt) =

1
B

B∑
b=1

Ŝc
b ,t+h

(Xt).

6 Other papers that were influential in the development of random forest methods include Amit and
Geman (1997) and Ho (1998).

616 Jeremy Piger

When implementing a RF classifier, the individual trees are usually allowed to
grow to maximum size, meaning that nodes are split until only pure nodes remain.
While such a tree should produce a classifier with low bias, it is likely to be unduly
influenced by peculiarities of the specific training sample, and thus will have high
variance. The averaging of the individual trees lowers this variance, while the ad-
ditional randomness injected by the random selection of predictor variables helps
maximize the variance reduction benefits of averaging. It is worth noting that by
searching only over a small random subset of predictors at each node for the optimal
splitting variable, the RF classifier also has computational advantages over bagging.

Extremely Randomized Trees, or ‘ExtraTrees,’ is another approach to reduce cor-
relation among individual classification trees. Unlike both bagged classification trees
and RF, ExtraTrees trains each individual classification tree on the entire training
sample rather than bootstrapped samples. As does a random forest, ExtraTrees ran-
domizes the subset of predictor variables considered as possible splitting variables
at each node. The innovation with ExtraTrees is that when training the tree, for
each possible split variable, only a single value of τ j is considered as the possible
split threshold. For each j, this value is randomly chosen from the uniform interval[
min(Xj ,t |Xj ,t ∈ A),max(Xj ,t |Xj ,t ∈ A)

]
. Thus, ExtraTrees randomizes across both

the split variable and the split threshold dimension. ExtraTrees was introduced by
Geurts, Ernst, and Wehenkel (2006), who argue that the additional randomization
introduced by ExtraTrees should reduce variance more strongly than weaker ran-
domization schemes. Also, the lack of a search over all possible τ j for each split
variable at each node provides additional computational advantages over the RF
classifier. Algorithm 18 provides a description of the ExtraTrees classifier:

Algorithm 18 Extremely Randomized Trees (Geurts, Ernst, and Wehenkel (2006))
1: for b = 1 to B do
2: Initialize a single unsplit node to contain the full training sample
3: for All unsplit nodes Au with total observations > threshold do
4: Randomly select Q predictor variables as possible splitting variables. Denote

these predictor variables at time t as X̃t

5: for Xj ,t ∈ X̃t do
6: Randomly select a single τ j from the uniform interval:[

min(Xj ,t |Xj ,t ∈ Au),max(Xj ,t |Xj ,t ∈ Au)
]

7: Create two non-overlapping regions AL
u = {Xt |Xj ,t < τ

j , Xt ∈ Au } and
AR = {Xt |Xj ,t ≥ τ

j , Xt ∈ Au } and calculate Ḡ as in (18.5).
8: end for
9: Select j to minimize Ḡ and create the associated nodes AL

u and AR
u .

10: Update the set of unsplit nodes to include AL
u and AR

u

11: end for
12: For final leaf nodes, A∗m , form Pc

A∗m
as in (18.3), for c = 1, . . . ,C and m = 1, . . .M

13: Form the single tree classifier: Ŝc
b ,t+h

(Xt) as in (18.4).
14: end for
15: Form the ExtraTrees classifier: Ŝc

t+h
(Xt) =

1
B

B∑
b=1

Ŝc
b ,t+h

(Xt).

18 Turning Points and Classification 617

RF and ExtraTrees classifiers have enjoyed a substantial amount of success in
empirical applications. They are also particularly well suited for data-rich envi-
ronments. Application to wide datasets of predictor variables is computationally
tractable, requiring a number of scans that at most increase linearly with the number
of predictors. Also, because these algorithms are based on classification trees, they
automatically conduct model selection as the classifier is trained.

Both RF and ExtraTrees classifiers can be implemented in R via the caret pack-
age, using the ranger method. Implementation involves three tuning parameters.
The first is the value of Q and is denoted mtry in the caret package. The second
is splitrule and indicates whether a random forest (splitrule= 0) or an ex-
tremely randomized tree (splitrule= 1) is trained. Finally, min.node.size
indicates the minimum number of observations allowed in the final regions estab-
lished for each individual classification tree. As discussed above, it is common with
random forests and extremely randomized trees to allow trees to be trained until all
regions are pure. This can be accomplished by setting min.node.size= 1.

18.3.7 Boosting

Boosting has been described by Hastie et al. (2009) as “one of the most power-
ful learning ideas introduced in the last twenty years" and by Breiman (1996) as
“the best off-the-shelf classifier in the world." Many alternative descriptions and
interpretations of boosting exist, and a recent survey and historical perspective is
provided inMayr, Binder, Gefeller, and Schmid (2014). In economics, several recent
papers have used boosting to predict expansion and recession episodes, including
Ng (2014), Berge (2015) and D opke, Fritsche, and Pierdzioch (2017). Boosting is
described in more detail in Chapter 14 of this book.

The central idea of boosting is to recursively apply simple ‘base’ learners to a
training sample, and then combine these base learners to form a strong classifier.
In each step of the recursive boosting procedure, the base learner is trained on
a weighted sample of the data, where the weighting is done so as to emphasize
observations in the sample that to that point had been classified incorrectly. The
final classifier is formed by combining the sequence of base learners, with better
performing base learners getting more weight in this combination.

The first boosting algorithms are credited to Schapire (1990), Freund (1995)
and Freund and Schapire (1996) and are referred to as AdaBoost. Later work by
Friedman, Hastie, and Tibshirani (2000) interpretedAdaBoost as a forward stagewise
procedure to fit an additive logistic regressionmodel, while Friedman (2001) showed
that boosting algorithms can be interpreted generally as non-parametric function
estimation using gradient descent. In the following I will describe boosting in more
detail using these later interpretations.

For notational simplicity, and to provide a working example, consider a two class
case, where I define the two classes as St+h = −1 and St+h = 1. Define a function
F (Xt) ∈ R that is meant to model the relationship between our predictor variables,

618 Jeremy Piger

Xt , and St+h . Larger values of F (Xt) signal increased evidence for St+h = 1, while
smaller values indicate increased evidence for St+h = −1. Finally, define a loss
function, C(St+h,F (Xt)), and suppose our goal is to choose F (Xt) such that we
minimize the expected loss:

ES,XC(St+h,F (Xt)) (18.7)

A common loss function for classification is exponential loss:

C(St+h,F (Xt)) = exp
(
−St+hF (Xt)

)
The exponential loss function is smaller if the signs of St+h and F (Xt) match than
if they do not. Also, this loss function rewards (penalizes) larger absolute values of
F (Xt) when it is correct (incorrect).

For exponential loss, it is straightforward to show (Friedman et al. (2000)) that
the F (Xt) that minimizes equation (18.7) is:

F (Xt) =
1

2
ln

[
Pr

(
St+h = 1|Xt

)
Pr

(
St+h = −1|Xt

)]
which is simply one-half the log odds ratio. A traditional approach commonly found
in economic studies is to assume an approximating parametric model for the log
odds ratio. For example, a parametric logistic regression model would specify:

ln

[
Pr

(
St+h = 1|Xt

)
Pr

(
St+h = −1|Xt

)] = X ′t β

A boosting algorithm alternatively models F (Xt) as an additive model (Friedman
et al. (2000)):

F (Xt) =

J∑
j=1

αjTj

(
Xt ; βj

)
(18.8)

where each Tj

(
Xt ; βj

)
is a base learner with parameters βj . Tj

(
Xt ; βj

)
is usually

chosen as a simple model or algorithm with only a small number of associated
parameters. A very common choice for Tj

(
Xt ; βj

)
is a CART regression tree with a

small number of splits.
Boosting algorithms fit equation (18.8) to the training sample in a forward stage-

wise manner. An additive model fit via forward stagewise iteratively solves for the
loss minimizing αjTj

(
Xt ; βj

)
, conditional on the sum of previously fit terms, la-

beled Fj−1 (Xt) =
j−1∑
i=1

αiTi
(
Xt ; βi

)
. Specifically, conditional on an initial F0 (Xt), we

iteratively solve the following for j = 1, . . . , J:

{αj, βj} = min
αj ,β j

T∑
t=1

C
(
St+h,

[
Fj−1 (Xt) + αjTj

(
Xt ; βj

)])
(18.9)

18 Turning Points and Classification 619

Fj (Xt) = Fj−1 (Xt) + αjTj

(
Xt ; βj

)
(18.10)

Gradient boosting finds an approximate solution to equation (18.9)-(18.10) via a
two step procedure. First, for each j, compute the ‘pseudo-residuals’ as the negative
gradient of the loss function evaluated at Fj−1 (Xt):

ej ,t+h = −
[
∂C(St+h,F(Xt))

∂F(Xt)

]
F(Xt)=Fj−1(Xt)

Next, a CART regression tree Tj

(
Xt ; βj

)
is fit to the pseudo-residuals. Specifically,

a tree is trained on a training sample made up of {ej ,t+h,Xt }
T
t=1, with the final tree

containing M non-overlapping leaves, A∗m, j , m = 1, . . . ,M . The CART regression
tree predicts a constant in each region:

Tj

(
Xt ; βj

)
=

M∑
m=1

ēm, j I(Xt ∈ A∗m, j)

where ēm, j is the simple average of ej ,t+h inside the leaf A∗m, j , and βj represents
the parameters of this tree, which would include details such as the split locations
and splitting variables. These are chosen as described in Section (18.3.5), but as the
pseudo-residuals are continuous, a least squares criterion is minimized to choose
βj rather than the Gini impurity. Notice that because the tree predicts a constant
in each regime, the solution to equation (18.9) involves simply a single parameter
optimization in each of the A∗m, j regions. Each of these optimizations takes the form:

γm, j = min
γ

∑
Xt ∈A

∗
m, j

C
(
St+h,Fj−1 (Xt) + γ

)
, m = 1, . . . ,M

Given this solution, equation (18.10) becomes:

Fj (Xt) = Fj−1 (Xt) +

M∑
m=1

γm, j I(Xt ∈ A∗m, j) (18.11)

As discussed in (Friedman (2001)), gradient boosting is analogous to AdaBoost
when the loss function is exponential. However, gradient boosting is more general,
and can be implemented for any differentiable loss function. Gradient boosting also
helps expose the intuition of boosting. The gradient boosting algorithm approximates
the optimal F(Xt) through a series of Newton steps, and in this sense boosting can be
interpreted as a numerical minimization of the empirical loss function in the space
of the function F(Xt). Each of these Newton steps moves Fj(Xt) in the direction of
the negative gradient of the loss function, which is the direction of greatest descent
for the loss function in F(Xt) space. Loosely speaking, the negative gradient, or
pseudo-residuals, provides us with the residuals from applying Fj−1(Xt) to classify
St+h . In this sense, at each step, the boosting algorithm focuses on observations that
were classified incorrectly in the previous step.

620 Jeremy Piger

Finally, Friedman (2001) suggests a modification of equation (18.11) to introduce
a shrinkage parameter:

Fj (Xt) = Fj−1 (Xt) + η

M∑
m=1

γm, j I(Xt ∈ A∗m, j),

where 0 < η ≤ 1 controls the size of the function steps in the gradient based
numerical optimization. In practice, η is a tuning parameter for the gradient boosting
algorithm.

Gradient boosting with trees as the base learners is referred to under a variety of
names, including a Gradient BoostingMachine,MART (multiple additive regression
trees), TreeBoost and a Boosted Regression Tree. The boosting algorithm for our
two class example is shown in Algorithm 19.

Algorithm 19 Gradient Boosting with Trees (Friedman (2001))

1: Initialize F0 (Xt) = min
γ

T∑
t=1

C(St+h , γ)

2: for j = 1 to J do
3: e j ,t+h = −

[
∂C(St+h ,F (Xt))

∂F (Xt)

]
F (Xt)=Fj−1(Xt)

, t = 1 . . .T

4: Fit T
(
Xt ; β j

)
to {e j ,t+h , Xt }

T
t=1 to determine regions A∗m, j , m = 1, . . .M

5: γm, j = min
γ

∑
Xt ∈A

∗
m, j

C
(
St+h , Fj−1 (Xt) + γ

)
, m = 1, . . .M

6: Fj (Xt) = Fj−1 (Xt) + η
M∑

m=1
γm, j I

(
Xt ∈ A∗m, j

)
7: end for

Upon completion of this algorithmwe have FJ (Xt), although inmany applications
this function is further converted into a more recognizable class prediction. For
example, AdaBoost uses the classifier sign(FJ (Xt)), which for the two-class example
with exponential loss, classifies St+h according to its highest probability class. In
our application, we will instead convert FJ (Xt) to a class probability by inverting
the assumed exponential cost function, and use these probabilities as our classifier,
Ŝt+h . Again, for the two class case with exponential loss:

Ŝc=1
t+h (Xt) =

exp(2FJ (Xt))

1 + exp(2FJ (Xt))

Ŝc=−1
t+h (Xt) =

1

1 + exp(2FJ (Xt))

Gradient boosting with trees scales very well to data-rich environments. The
forward-stagewise gradient boosting algorithms simplify optimization considerably.
Further, gradient boosting is commonly implemented with small trees, in part to
avoid overfitting. Indeed, a common choice is to use so called ‘stumps’, which are
trees with only a single split. This makes implementation with large sets of predictors

18 Turning Points and Classification 621

very fast, as at each step in the boosting algorithm, only a small number of scans
through the predictor variables is required.

Two final aspects of gradient boosting bear further comment. First, as discussed
in Hastie et al. (2009), the algorithm above can be modified to incorporate K > 2
classes by assuming a negative multinomial log likelihood cost function. Second,
Friedman (2001) suggests a modified version of Algorithm 19 in which, at each
step j, a random subsample of the observations is chosen. This modification, known
as ‘stochastic gradient boosting,’ can help prevent overfitting while also improving
computational efficiency.

Gradient boosting can be implemented in R via the caret package, using the
gbm method. Implementation of gbm where regression trees are the base learners
involves four tuning parameters. The first is n.trees, which is the stopping point
J for the additive model in equation (18.8). The second is interaction.depth,
which is the depth (maximum number of consecutive splits) of the regression trees
used as weak learners. shrinkage is the shrinkage parameter, η in the updating
rule equation (18.3.7). Finally, n.minobsinnode is the minimum terminal node
size for the regression trees.

18.4 Markov-Switching Models

In this section we describe Markov-switching (MS) models, which are a popular
approach for both historical and real-time classification of economic data. In contrast
to the machine learning algorithms presented in the previous section, MS models
are unsupervised, meaning that a historical time series indicating the class is not
required. Instead, MS models assume a parametric structure for the evolution of the
class, as well as for the interaction of the class with observed data. This structure
allows for statistical inference on which class is, or will be, active. In data-rich
environments, Markov-switching can be combined with dynamic factor models to
capture the information contained in datasets with many predictors. Obviously, MS
models are particularly attractivewhen a historical class indicator is not available, and
thus supervised approaches cannot be implemented. However, MS models have also
been used quite effectively for real-time classification in settings where a historical
indicator is available. We will see an example of this in Section 18.5.

MSmodels are parametric time-series models in which parameters are allowed to
take on different values in each of C regimes, which for our purposes correspond to
the classes of interest. A fundamental difference from the supervised approaches we
have already discussed is that these regimes are not assumed to be observed in the
training sample. Instead, a stochastic process assumed to have generated the regime
shifts is included as part of the model, which allows for both in-sample historical
inference on which regime is active, as well as out-of-sample forecasts of regimes. In
the MS model, introduced to econometrics by Goldfeld and Quandt (1973), Cosslett
and Lee (1985), and Hamilton (1989), the stochastic process assumed is a C-state
Markov process. Also, and in contrast to the non-parametric approaches we have

622 Jeremy Piger

already seen, a specific parametric structure is assumed to link the observed Xt to the
regimes. Following Hamilton (1989), this linking model is usually an autoregressive
time-series model with parameters that differ in the C regimes. The primary use of
these models in the applied economics literature has been to describe changes in the
dynamic behavior of macroeconomic and financial time series.

The parametric structure of MS models comes with some benefits for classifi-
cation. First, by specifying a stochastic process for the regimes, one can allow for
dynamic features that may help with both historical and out-of-sample classification.
For example, most economic regimes of interest display substantial levels of persis-
tence. In an MS model, this persistence is captured by the assumed Markov process
for the regimes. Second, by assuming a parametric model linking Xt to the classes,
the model allows the researcher to focus the classification exercise on the object
of interest. For example, if one is interested in identifying high and low volatility
regimes, a model that allows for switching in only conditional variance of an AR
model could be specified.7

Since the seminal work of Hamilton (1989), MS models have become a very
popular modeling tool for applied work in economics. Of particular note are regime-
switching models of measures of economic output, such as real Gross Domestic
Product (GDP), which have been used to model and identify the phases of the
business cycle. Examples of such models include Hamilton (1989), Chauvet (1998),
Kim and Nelson (1999a), Kim and Nelson (1999b), and Kim, Morley, and Piger
(2005). A sampling of other applications include modeling regime shifts in time
series of inflation and interest rates (Evans and Wachtel (1993); Garcia and Perron
(1996); Ang and Bekaert (2002)), high and low volatility regimes in equity returns
(Turner, Startz, and Nelson (1989); Hamilton and Susmel (1994); Hamilton and Lin
(1996); Dueker (1997); Guidolin and Timmermann (2005)), shifts in the Federal
Reserve’s policy “rule” (Kim (2004); Sims and Zha (2006)), and time variation in
the response of economic output to monetary policy actions (Garcia and Schaller
(2002); Kaufmann (2002); Ravn and Sola (2004); Lo and Piger (2005)). Hamilton
and Raj (2002), Hamilton (2008) and Piger (2009) provide surveys of MS models,
while Hamilton (1994) and Kim and Nelson (1999c) provide textbook treatments.

Following Hamilton (1989), early work on MS models focused on univariate
models. In this case, Xt is scalar, and a common modeling choice is a pth-order
autoregressive model with Markov-switching parameters:

Xt = µSt+h + φ1,St+h

(
Xt−1 − µSt+h−1

)
+ · · · + φp,St+h

(
Xt−p − µSt+h−p

)
+ εt

εt ∼ N
(
0, σ2

St+h

)
(18.12)

7MSmodels generally require a normalization in order to properly define the regimes. For example,
in a two regime example where the regimes are high and low volatility, we could specify that
St+h = 1 is the low variance regime and St+h = 2 is the high variance regime. In practice this is
enforced by restricting the variance in St+h = 2 to be larger than that in St+h = 1. See Hamilton,
Waggoner, and Zha (2007) for an extensive discussion of normalization in the MS model.

18 Turning Points and Classification 623

where St+h ∈ {1, . . . ,C} indicates the regime and is assumed to be unobserved, even
in the training sample. In this model, each of the mean, autoregressive parameters
and conditional variance parameters are allowed to change in each of the C different
regimes. Hamilton (1989) develops a recursive filter that can be used to construct
the likelihood function for this MS autoregressive model, and thus estimate the
parameters of the model via maximum likelihood.

A subsequent literature explored Markov-switching in multivariate settings. In
the context of identifying business cycle regimes, Diebold and Rudebusch (1996)
argue that considering multivariate information in the form of a factor structure
can drastically improve statistical identification of the regimes. Chauvet (1998)
operationalizes this idea by developing a statistical model that incorporates both a
dynamic factormodel andMarkov switching, now commonly called a dynamic factor
Markov-switching (DFMS) model. Specifically, if Xt is multivariate, we assume that
Xt is driven by a single-index dynamic factor structure, where the dynamic factor is
itself driven by a Markov-switching process. A typical example of such a model is
as follows:

Xstd
t =

λ1 (L)

λ2 (L)
...

λN (L)

Ft + vt

where Xstd
t is the demeaned and standardized vector of predictor variables, λi (L) is

a lag polynomial, and vt =
(
v1,t, v2,t, . . . , vN ,t

) ′ is a zero-mean disturbance vector
meant to capture idiosyncratic variation in the series. vt is allowed to be serially
correlated, but its cross-correlations are limited. In the so-called ‘exact’ factor model
we assume that E(vi,tvj ,t) = 0, while in the ‘approximate’ factor model vt is allowed
to have weak cross correlations. Finally, Ft is the unobserved, scalar, ‘dynamic
factor.’ We assume that Ft follows a Markov-switching autoregressive process as in
equation (18.12), with Xt replaced by Ft .

Chauvet (1998) specifies a version of this DFMS model where the number of
predictors is N = 4 and shows how the parameters of both the dynamic factor
process and the MS process can be estimated jointly via the approximate maximum
likelihood estimator developed in Kim (1994). Kim and Nelson (1998) develop a
Bayesian Gibbs-sampling approach to estimate a similar model. Finally, Camacho et
al. (2018) developmodifications of the DFMS framework that are useful for real-time
monitoring of economic activity, including mixed-frequency data and unbalanced
panels. Chapter 2 of this book presents additional discussion of the DFMS model.

As discussed in Camacho, Perez-Quiros, and Poncela (2015), in data-rich en-
vironments the joint estimation of the DFMS model can become computationally
unwieldy. In these cases, an alternative, two-step, approach to estimation of model
parameters can provide significant computational savings. Specifically, in the first
step, the dynamic factor Ft is estimated using the non-parametric principal compo-

624 Jeremy Piger

nents estimator of Stock and Watson (2002). Specifically, F̂t is set equal to the first
principal component of Xstd

t . In a second step, F̂t is fit to a univariateMSmodel as in
equation (18.12). The performance of this two-step approach relative to the one-step
approach was evaluated by Camacho et al. (2015), and the two step approach was
used by Fossati (2016) for the task of identifying U.S. business cycle phases in real
time.

For the purposes of this chapter, we are primarily interested in the ability of MS
models to produce a class prediction, Ŝc

t+h
. In a MS model, this prediction comes

in the form of a ‘smoothed’ conditional probability: Ŝc
t+h
= Pr

(
St+h = c | X̃T

)
, c =

1, . . . ,C, where X̃T denotes the entire training sample, X̃T = {Xt }
T
t=1. Bayesian es-

timation approaches of MS models are particularly useful here, as they produce this
conditional probability while integrating out uncertainty regarding model parame-
ters, rather than conditioning on estimates of these parameters.

In the application presented in Section 18.5 I will consider two versions of the
DFMS model for classification. First, for cases with a small number of predictor
variables, we estimate the parameters of the DFMSmodel jointly using the Bayesian
sampler of Kim and Nelson (1998). Second, for cases where the number of predictor
variables is large, we use the two step approach described above, where we estimate
the univariate MS model for F̂t via Bayesian techniques. Both of these approaches
produce a classifier in the form of the smoothed conditional probability of the class.
A complete description of the Bayesian samplers used in estimation is beyond the
scope of this chapter. I refer the interested reader to Kim and Nelson (1999c), where
detailed descriptions of Bayesian samplers for MS models can be found.

18.5 Application

In this section I present an application of the classification techniques presented above
to nowcasting U.S. expansion and recession phases at the monthly frequency. In this
case, St+h ∈ {1,2}, where St+h = 1 indicates a month that is a recession and St+h = 2
indicates a month that is an expansion. As I am interested in nowcasting, I set h = 0.
As the measure of expansion and recession regimes, I use the NBER business cycle
dates, which are determined by the NBER’s Business Cycle Dating Committee. I
will evaluate the ability of the alternative classifiers to accurately classify out-of-
sample months that have not yet been classified by the NBER, and also to provide
timely identification of turning points between expansion and recession (peaks) and
recession and expansion (troughs) in real time.

Providing improved nowcasts of business cycle phases and associated turning
points is of significant importance because there are many examples of turning points
that were not predicted ex-ante. This leaves policymakers, financial markets, firms,
and individuals to try to determine if a new business cycle phase has already begun.
Even this is a difficult task, with new turning points usually not identified until many
months after they occur. For example, the NBER has historically announced new

18 Turning Points and Classification 625

turning points with a lag of between 4 and 21 months. Statistical models improve on
the NBER’s timeliness considerably, with little difference in the timing of the turning
point dates established.8However, thesemodels still generally identify turning points
only after several months have passed. For example, Hamilton (2011) surveys a wide
range of statistical models that were in place to identify business cycle turning points
in real time, and finds that such models did not send a definitive signal regarding the
December 2007 NBER peak until late 2008.

There have been a number of existing studies that evaluate the performance of
individual classifiers to nowcast U.S. business cycle dates. In this chapter I contribute
to this literature by providing a comparison of a broad range of classifiers, including
several that have not yet been evaluated for the purpose of nowcasting business
cycles. In doing so, I also evaluate the ability of these classifiers to provide improved
nowcasts using large N vs. small N datasets. Most of the existing literature has
focused on small N datasets, usually consisting of four coincident monthly series
highlighted by the NBER’s Business Cycle Dating Committee as important in their
decisions. Notable exceptions are Fossati (2016), Davig and Smalter Hall (2016) and
Berge (2015), each of which uses larger datasets to classify NBER recessions in real
time.

For predictor variables, I begin with the FRED-MD dataset, which is a monthly
dataset on a large number of macroeconomic and financial variables maintained by
the Federal Reserve Bank of St. Louis. The development of FRED-MD is described
in McCracken and Ng (2015). I use the most recent version of this dataset available,
which as of the writing of this chapter was the vintage released at the end of Novem-
ber 2018. This vintage provides data for 128 monthly series covering months from
a maximum of January 1959 through October 2018. I then delete six series that are
not regularly available over the sample period, and add seven series on manufactur-
ing activity from the National Association of Purchasing Managers, obtained from
Quandl (www.quandl.com.) I also add seven indices of ‘news implied volatility’ as
constructed in Manela and Moreira (2017). The addition of these series is motivated
by Karnizova and Li (2014), who show that uncertainty measures have predictive
power for forecasting U.S. recessions. Finally, I restrict all series to begin in January
1960, which eliminates missing values during 1959 for a number of series.

For all series that are from the original FRED-MD dataset, I transform the series
to be stationary using the transformation suggested in McCracken and Ng (2015),
implemented using the Matlab code available from Michael McCracken’s website.
For the seven NAPM series and NVIX series, I leave the series without transfor-
mation. In some cases, the transformation involves differencing, which uses up the
initial observation. To have a common starting point for our sample, I begin mea-
suring all series in February 1960. The final raw dataset then consists of 136 series,
where all series begin in February 1960 and extend to a maximum of October 2018.

In the analysis I consider three alternative datasets. The first, labeled Narrow in
the tables below, is a small dataset that uses four coincident indicators that have
been the focus of much of the U.S. business cycle dating literature. These series are

8 See, e.g., Chauvet and Piger (2008), Chauvet and Hamilton (2006) and Giusto and Piger (2017).

626 Jeremy Piger

the growth rate of non-farm payroll employment, the growth rate of the industrial
production index, the growth rate of real personal income excluding transfer receipts,
and the growth rate of real manufacturing and trade sales. The second dataset,
labeled Real Activity, is a larger dataset consisting of the 70 variables that are in the
groupings ‘output and income’, ‘labor market’, ‘housing’ and ‘consumption, orders
and inventories’ as defined in McCracken and Ng (2015). These variables define the
real activity variables in the dataset, and as such target the most obvious variables
with which to date turning points in real economic activity. The third dataset, labeled
Broad, consists of all the variables in the dataset.

To evaluate the performance of the classifiers using these datasets, I conduct a
pseudo out-of-sample nowcasting exercise that covers the last two decades. Specifi-
cally, consider an analyst applying a classification technique in real time at the end
of each month from January 2000 to November 2018. For each of these months,
I assume the analyst has a dataset covering the time period that would have been
available in real time. That is, I accurately replicate the real-time data reporting lags
the analyst would face. The reason this is a pseudo out-of-sample exercise is that I
do not use the vintage of each dataset that would have been available in real time, as
such vintage data is not readily available for all the variables in our dataset. Chauvet
and Piger (2008) show that data revisions do not cause significant inaccuracies in
real time dating of turning points. That said, interesting future work would replicate
this analysis with a fully vintage dataset.

In each month, the analyst uses the available dataset to train the supervised
classifiers over a period for which the NBER classification of St is assumed known.
At each month, the lag with which the NBER classification is assumed known is
allowed to vary, and is set using the approach taken in Giusto and Piger (2017).
Specifically, I assume that: 1) The date of a new peak or trough is assumed to be
known once it is announced by the NBER. 2) If the NBER does not announce a
new peak within twelve months of a date, then it is assumed that a new peak did
not occur at that date. Twelve months is the longest historical lag the NBER has
taken in announcing a new business cycle peak. 3) Once the date of a new turning
point is announced by the NBER, the new NBER business cycle phase (expansion
or recession) is assumed to last at least six months. Since the unsupervised DFMS
classifier does not require knowledge of the NBER classification, I estimate the
parameters of this model over the full period for which the predictor data is available
to the analyst. After training, the analyst then uses the classifier to classify those
months through the end of the relevant sample of predictor variables for which the
NBER dates are not known.

Somewhatmore formally, suppose the data sample of predictor variables available
to the analyst ends in time H, and the NBER dates are known through time H − J.
Then the supervised classifiers would be trained on data through H − J, and the
DFMS model would be estimated on data through H. After training and estimation,
all classifiers will be used to classify the unknown NBER dates frommonth H− J+1
through H, and the accuracy of these monthly classifications will be evaluated. I will
also use these out-of-sample classifications to identify new business cycle turning
points in real time.

18 Turning Points and Classification 627

Before discussing the results, there are several details of the implementation to
discuss. First, when the analyst applies the classifiers to predict the NBER date out
of sample, the most recent data to be classified will be incomplete due to differential
reporting lags across series. In general, I handle these ‘ragged edges’ by filling in
the missing values using kNN imputation, as discussed in Section 18.3.3, prior to
performing any subsequent analysis. Second, for the supervised classifiers, I classify
St on the basis of the contemporaneous values of the predictor variables (month t) and
the first lag (month t − 1). That is, the Xt vector contains both the contemporaneous
and first lag of all variables in the relevant sample. For the unsupervised DFMS
approach, all available values of Xt are used in forming the smoothed posterior
probability for each class. Third, for each dataset, I replace outliers, defined as
datapoints that are greater than four standard deviations from the mean, with the
median of a six quarter window on either side of the outlier. Finally, as is typical in
the classification literature, I standardize and demean all variables prior to analysis.9

For each of the supervised classifiers, I use the caret package in R to train and
form predictions. In each case, repeated, stratified k-fold cross validation is used for
tuning parameters, with k set equal to 10, and the number of repeats also set equal
to 10.10 The objective function used in the cross validation exercise was AUROC.
Default ranges from caretwere used in tuning parameters. Note that both the kNN
imputation for missing values, as well as outlier detection, were done separately on
each fold of the cross-validation exercise, which prevents data from outside the fold
from informing the within-fold training.

For the unsupervised DFMS model, we must specify a specific version of the
Markov-switching equation to apply to the factor Ft . In order to provide a comparison
to the existing literature, I use specifications that most closely match those in existing
studies. Specifically, for themodel applied to the narrow dataset, for which theDFMS
model is estimated jointly, I follow Chauvet (1998) and Kim and Nelson (1999b)
and allow the factor to follow an AR(2) process with regime switching in mean:

Ft = µSt + φ1
(
Xt−1 − µSt−1

)
+ φ2

(
Xt−2 − µSt−2

)
+ εt

εt ∼ N
(
0, σ2

)
For the DFMS model applied to the real activity dataset, for which the DFMS model
is estimated via a two-step procedure, I follow Camacho et al. (2015) and use a
simple AR(0) process with a switching mean:

9 In unreported results, I also considered a version of each supervised classifier that classified based
on predictor variables formed as principal components from the relevant dataset. The performance
of this version of the classifier was similar in all cases to the results applied to the full dataset of
individual predictors.
10 This is a relatively small number of repeats, andwas chosen to reduce the computational burden of
the recursive out-of-sample nowcasting exercise. In unreported results, I confirmed the robustness
of several randomly chosen reported results to a larger number of repeats (100).

628 Jeremy Piger

Ft = µSt + εt

εt ∼ N
(
0, σ2

)
I do not consider the broad dataset for the DFMS model, as the diversity of series in
this dataset is likely not well described by only a single factor as is assumed by the
DFMS model.

Table 18.1 presents the QPS and AUROC statistics for each classifier applied
to each dataset, calculated over all the out-of-sample observations in the recursive
nowcasting exercise. There are several conclusions that can be drawn from these
results. First of all, in general, the AUROC statistics are very high, suggesting that
each of these classifiers has substantial ability to classify expansion and recession
months out of sample. Second, there are only relatively small differences in these
statistics across classifiers. The DFMS model applied to the narrow dataset provides
the highest AUROC at 0.997, which is very close to perfect classification ability,
while the kNN classifier applied to the narrow dataset produces the lowest QPS.
However, most classifiers produce AUROCs and QPS values that are reasonably
close to these best performing values.

Third, Table 18.1 suggests that the out-of-sample evaluation metrics are only
moderately improved, it at all, by considering predictor variables beyond the narrow
dataset. The differences in the evaluation statistics that result from changing dataset
size are small, and in many cases these changes are not in a consistent direction
across the QPS vs. AUROC. Overall, these results do not suggest that considering
a larger number of predictors over the narrow dataset is clearly advantageous for
nowcasting business cycle phases in U.S. data. Note that some of this result likely
comes because there is limited room for improvement over the narrow dataset.

Table 18.1 also presents results for a simple ensemble classifier, which is formed
as the average of the alternative classifiers. The ensemble classifier averages the clas-
sification from all six classifiers for the narrow and real activity dataset, and averages
the classification of the five supervised classifiers for the broad dataset. By averaging
across approximately unbiased classifier that are not perfectly correlated, an ensem-
ble classifier holds out the possibility of lower variance forecasts than is produced
by the individual classifiers. Interestingly, the ensemble classifiers perform well in
this setting, with the ensemble classifier applied to the real activity dataset having
the lowest QPS and second highest AUROC of any classifier / dataset combination
in the table.

The results inTable 18.1 do not speak directly to the question of identifying turning
points (peaks and troughs) in real time. To evaluate the ability of the classifiers to
identify turning points, we require a rule to transform the classifier output into
turning point predictions. Here I employ a simple rule to identify a new turning
point, which can be described as follows: If the most recent known NBER classified
month is an expansion month, a business cycle peak is established if Ŝ1

t (Xt) ≥ 0.5
for the final month in the out-of-sample period. Similarly, if the most recent known
NBER classified month is a recession month, a business cycle trough is established
if Ŝ1

t (Xt) < 0.5 for the final month in the out-of-sample period. This is a rather

18 Turning Points and Classification 629

Table 18.1 Out-of-Sample Evaluation Metrics for Alternative Classifiers

Classifier QPS AUROC

Naïve Bayes

Narrow 0.058 0.990

Real Activity 0.064 0.974

Broad 0.074 0.968

kNN

Narrow 0.030 0.989

Real Activity 0.033 0.978

Broad 0.055 0.990

Random Forest / Extra Trees

Narrow 0.034 0.988

Real Activity 0.032 0.988

Broad 0.036 0.989

Boosting

Narrow 0.043 0.980

Real Activity 0.037 0.978

Broad 0.039 0.982

LVQ

Narrow 0.043 0.938

Real Activity 0.046 0.930

Broad 0.038 0.952

DFMS

Narrow 0.041 0.997

Real Activity 0.047 0.992

Ensemble

Narrow 0.034 0.992

Real Activity 0.029 0.993

Broad 0.031 0.993

Notes: This table shows the quadratic probability score (QPS) and the area under the ROC curve
(AUROC) for out-of-sample nowcasts produced from January 2000 to October 2018 by the super-
vised and unsupervised classifiers discussed in Sections 18.3 and 18.4.

630 Jeremy Piger

aggressive rule, which puts a high value on speed of detection. As such, we will be
particularly interested in the tendency of this rule to identify false turning points.

Table 18.2 shows the performance of each classifier for identifying the four U.S.
business cycle turning points over the 2000-2018 time period. In the table, the dates
shown are the first month in which the analyst would have been able to identify a
turning point in the vicinity of the relevant turning point. For example, consider the
column for the December 2007 business cycle peak. An entry of ‘Mar 2008’ means
that an analyst applying the classifiers at the end of March 2008 would have detected
a business cycle peak in the vicinity of the December 2007 peak. Because there is
a minimum one month lag in data reporting for all series in the FRED-MD dataset,
the analyst would have been using a dataset that extended through February 2008 to
identify this turning point. An entry of ‘NA’ means that the relevant turning point
was not identified prior to the NBER Business Cycle Dating Committee making the
announcement of a new business cycle turning point.

I begin with the two business cycle peaks in the out-of-sample period. If we
focus on the narrow dataset, we see that most of the classifiers identify the March
2001 business cycle peak by the end of May 2001, and the December 2007 peak by
the end of May 2008. This is a very timely identification of both of these turning
points. For theMarch 2001 peak, identification at the end ofMay 2001means that the
classifiers identified this recession using data throughApril 2001, which was the very
first month of the recession. For the December 2007 peak, Hamilton (2011) reports
that other real-time approaches in use at the time did not identify a business cycle
peak until late 2008 or early 2009, and the NBER business cycle dating committee
announced the December 2007 peak in December 2008. Thus, identification at the
end of May 2008 is relatively very fast. This timely performance does come with
a single false business cycle peak being called for several, although not all, of the
classifiers. The date of this false peak was in September 2005 for most classifiers.

If we move to the larger real activity and broad datasets, in most cases the
performance of the classifiers for identifying business cycle peaks deteriorates. Two
of the classifiers, kNN and Random Forests, fail to identify the 2001 business
cycle peak, while several classifiers identify peaks more slowly when using the
larger datasets than the narrow dataset. There are some cases where moving from
the narrow to the real activity dataset does improve with detection. The primary
example is the DFMS model, where three of the four turning points are identified
more quickly when using the real activity dataset, and the false peak that occurs
under the narrow dataset is eliminated. Overall, a reasonable conclusion is that there
are limited gains from using larger datasets to identify business cycle peaks in real
time, with the gains that do occur coming from the use of the real activity dataset
with certain classifiers.

Moving to troughs, the five supervised classification techniques identify troughs
very quickly in real time when applied to the narrow dataset. For the November 2001
trough, these classifiers identify the trough by January or February of 2002, while the
June 2009 trough is identified by August or September of 2009. This is impressive
considering the very slow nature of the recovery following these recessions. As an
example, the NBER business cycle dating committee didn’t identify the November

18 Turning Points and Classification 631

Table 18.2 Out-of-Sample Turning Point Identification for Alternative Classifiers

Peaks Troughs

Classifier Mar 2001 Dec 2007 Nov 2001 Jun 2009 False Turning Points

Naïve Bayes

Narrow Feb 2001 May 2008 Jan 2002 Sep 2009 False Peak: Sep 2005

Real Activity Feb 2001 Mar 2008 Mar 2002 Feb 2010 False Peak: Nov 2010

Broad Oct 2001 Mar 2008 Jan 2002 Feb 2010 None

kNN

Narrow May 2001 May 2008 Jan 2002 Aug 2009 None

Real Activity NA Sep 2008 Jan 2002 Aug 2009 None

Broad NA NA Nov 2001 Jul 2009 None

Random Forest /

Extra Trees

Narrow May 2001 May 2008 Jan 2002 Aug 2009 None

Real Activity NA May 2008 Mar 2002 Aug 2009 None

Broad NA Oct 2008 Jan 2002 Aug 2009 None

Boosting

Narrow May 2001 May 2008 Jan 2002 Aug 2009 False Trough: Nov 2008

Real Activity May 2001 Nov 2008 Dec 2001 Sep 2009 None

Broad May 2001 Nov 2008 Dec 2001 May 2009 None

LVQ

Narrow May 2001 May 2008 Feb 2002 Aug 2009 False Peak: Sep 2005

Real Activity Sep 2001 Mar 2008 Mar 2002 Aug 2009 False Peak: Oct 2010

Broad May 2001 Mar 2008 Feb 2002 Aug 2009 None

DFMS

Narrow May 2001 May 2008 Jun 2002 Sep 2009 False Peak: Sep 2005

Real Activity Apr 2001 April 2008 Apr 2002 May 2010 None

Ensemble

Narrow May 2001 May 2008 Jan 2002 Aug 2009 False Peak: Sep 2005

Real Activity Jul 2001 May 2008 Mar 2002 Sep 2009 None

Broad Mar 2001 May 2008 Mar 2002 Sep 2009 None

Notes: This table shows the earliest month that an analyst would have identified the four NBER
business cycle turning points over the January 2000 to October 2018 out-of-sample period using
the supervised and unsupervised classifiers discussed in Sections 18.3 and 18.4. An entry of ‘NA’
means the relevant turning point was not identified prior to the NBER Business Cycle Dating
Committee making the announcement of a new business cycle turning point.

632 Jeremy Piger

2001 troughs until July 2003 and the June 2009 trough until September 2010. This
performancewas achievedwith only a single false trough identified by one algorithm,
Boosted Classification Trees. The DFMS classifier was somewhat slower to detect
these troughs than the other classifiers, although still substantially faster than the
NBER announcement. Finally, consistent with the results for peaks, larger datasets
did not substantially improve the timeliness with which troughs were identified on
average.

Given the small number of turning points in the out-of-sample period, it is hard
to distinguish definitively between the performance of the individual classifiers. If
one were forced to choose a single classifier for the purpose of identifying turning
points, both the kNN classifier and the random forest classifier applied to the narrow
dataset were quick to identify turning points while producing no false positives. The
other classifiers had similar performance, but produced a single false positive. That
said, the kNN classifier and random forest classifier both failed to identify business
cycle peaks when applied to the larger datasets, which may give us some pause as to
the robustness of these classifiers. If one looks more holistically across the various
datasets, the boosting algorithm emerges as a possible favorite, as it identifies all four
turning points for all four datasets, and does sowith speed comparable to the top set of
performers for each dataset. Finally, the ensemble classifier has overall performance
similar to the boosting algorithm. We might also expect, given the potential effect
of averaging on reducing classifier variance, that the ensemble classifier will be the
most robust classifier across alternative out-of-sample periods.

18.6 Conclusion

In this chapter I have surveyed a variety of approaches for real-time classification of
economic time-series data. Special attention was paid to the case where classifica-
tion is conducted in a data-rich environment. Much of the discussion was focused
on machine learning supervised classification techniques that are common to the
statistical classification literature, but have only recently begun to be widely used
in economics. I also presented a review of Markov-switching models, which is an
unsupervised classification approach that has been commonly used in economics
for both historical and real-time classification. Finally, I presented an application to
real-time identification of U.S. business cycle turning points based on a wide dataset
of 136 macroeconomic and financial time-series.

References

Amit, Y., & Geman, D. (1997). Shape quantization and recognition with randomized
trees. Neural Computation, 9, 1545–1588.

18 Turning Points and Classification 633

Ang, A., &Bekaert, G. (2002). Regime switches in interest rates. Journal of Business
and Economic Statistics, 20, 163–182.

Berge, T. (2015). Predicting recessions with leading indicators: Model averaging and
selection over the business cycle. Journal of Forecasting, 34(6), 455–471.

Berge, T., & Jordá, O. (2011). The classification of economic activity into expansions
and recessions. American Economic Journal: Macroeconomics, 3(2), 246–
277.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and re-
gression trees. Belmont, CA: Wadsworth.

Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2), 123–140.
Breiman, L. (2001). Random Forests. In Machine learning (pp. 5–32).
Camacho, M., Perez-Quiros, G., & Poncela, P. (2015). Extracting nonlinear signals

from several economic indicators. Journal of Applied Econometrics, 30(7),
1073–1089.

Camacho, M., Perez-Quiros, G., & Poncela, P. (2018). Markov-switching dynamic
factor models in real time. International Journal of Forecasting, 34, 598–611.

Chauvet, M. (1998). An econometric characterization of business cycle dynamics
with factor structure and regime switching. International Economic Review,
39, 969–996.

Chauvet, M., & Hamilton, J. D. (2006). Dating business cycle turning points. In
P. R. Costas Milas & D. van Dijk (Eds.), Nonlinear time series analysis of
business cycles (pp. 1–53). Elsevier, North Holland.

Chauvet, M., & Piger, J. (2008). A comparison of the real-time performance of
business cycle dating methods. Journal of Business and Economic Statistics,
26(1), 42–49.

Cosslett, S., & Lee, L.-F. (1985). Serial correlation in discrete variable models.
Journal of Econometrics, 27, 79–97.

D opke, J., Fritsche, U., & Pierdzioch, C. (2017). Predicting recessions with boosted
regression trees. International Journal of Forecasting, 33, 745–759.

Davig, T., & Smalter Hall, A. (2016). Recession forecasting using Bayesian classi-
fication. Federal Reserve Bank of Kansas City Research Working paper no.
1606.

Diebold, F. X., & Rudebusch, G. D. (1996). Measuring business cycles: A modern
perspective. The Review of Economics and Statistics, 78(1), 67–77.

Dueker, M. (1997). Markov switching in garch processes and mean-reverting stock-
market volatility. Journal of Business and Economic Statistics, 15, 26–34.

Estrella, A., & Mishkin, F. S. (1998). Predicting U.S. recessions: Financial variables
as leading indicators. The Review of Economics and Statistics, 80(1), 45–61.

Estrella, A., Rodrigues, A. P., & Schich, S. (2003). How stable is the predictive
power of the yield curve? Evidence from Germany and the United States. The
Review of Economics and Statistics, 85(3), 629–644.

Evans, M., & Wachtel, P. (1993). Inflation regimes and the sources of inflation
uncertainty. Journal of Money, Credit and Banking, 25, 475–511.

Fossati, S. (2016). Dating U.S. business cycles with macro factors. Studies in Non-
linear Dynamics and Econometrics, 20, 529–547.

634 Jeremy Piger

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and
Computation, 121(2), 256–285.

Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm.
Proceedings of ICML, 13, 148–156.

Friedman, J. (2001). Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5), 1189–1232.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A
statistical view of boosting. The Annals of Statistics, 28(2), 337–407.

Fushing, H., Chen, S.-C., Berge, T.,& Jordá, O. (2010).A chronology of international
business cycles through non-parametric decoding. SSRN Working Paper no:
1705758.

Garbellano, J. (2016). Nowcasting recessions with machine learning: New tools for
predicting the business cycle (Bachelor’s Thesis, University of Oregon).

Garcia, R., & Schaller, H. (2002). Are the effects of monetary policy asymmetric?
Economic Inquiry, 40, 102–119.

Garcia, R., & Perron, P. (1996). An analysis of the real interest rate under regime
shifts. Review of Economics and Statistics, 78(1), 111–125.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees.Machine
Learning, 63(1), 3–42.

Giusto, A., & Piger, J. (2017). Identifying business cycle turning points in real time
with vector quantization. International Journal of Forecasting, 33, 174–184.

Goldfeld, S. M., & Quandt, R. E. (1973). A markov model for switching regressions.
Journal of Econometrics, 1(1), 3–16.

Guidolin, M., & Timmermann, A. (2005). Economic implications of bull and bear
regimes in uk stock and bond returns. Economic Journal, 115(500), 111–143.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary
time series and the business cycle. Econometrica, 57(2), 357–384.

Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University
Press.

Hamilton, J. D. (2008). Regime switching models. In S. N. Durlauf & L. E. Blume
(Eds.), New palgrave dictionary of economics, 2nd edition, Palgrave MacMil-
lan.

Hamilton, J. D. (2011). Calling recessions in real time. International Journal of
Forecasting, 27(4), 1006–1026.

Hamilton, J. D., & Lin, G. (1996). Stock market volatility and the business cycle.
Journal of Applied Econometrics, 11, 573–593.

Hamilton, J. D., & Raj, B. (2002). New directions in business cycle research and
financial analysis. Empirical Economics, 27(2), 149–162.

Hamilton, J. D., & Susmel, R. (1994). Autoregressive conditional heteroskedasticity
and changes in regime. Journal of Econometrics, 64, 307–333.

Hamilton, J. D., Waggoner, D. F., & Zha, T. (2007). Normalization in econometrics.
Econometric Reviews, 26(2-4), 221–252.

Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quanti-
zation. Neural Networks, 15(8-9), 1059–1068.

18 Turning Points and Classification 635

Harding, D., & Pagan, A. (2006). Synchronization of cycles. Journal of Economet-
rics, 132(1), 59–79.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning.
data mining, inference and prediction. New York, NY: Springer.

Ho, T. K. (1998). The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–
844.

Karnizova, L., & Li, J. (2014). Economic policy uncertainty, financial markets and
probability of U.S. recessions. Economics Letters, 125(2), 261–265.

Kaufmann, S. (2002). Is there an asymmetric effect of monetary policy over time?
A bayesian analysis using austrian data. Empirical Economics, 27, 277–297.

Kauppi, H., & Saikkonen, P. (2008). Predicting u.s. recessions with dynamic binary
response models. The Review of Economics and Statistics, 90(4), 777–791.

Kim, C.-J. (1994). Dynamic linear models withmarkov switching. Journal of Econo-
metrics, 60(1-2), 1–22.

Kim, C.-J. (2004). Markov-switching models with endogenous explanatory vari-
ables. Journal of Econometrics, 122, 127–136.

Kim, C.-J., Morley, J., & Piger, J. (2005). Nonlinearity and the permanent effects of
recessions. Journal of Applied Econometrics, 20(2), 291–309.

Kim, C.-J., & Nelson, C. R. (1998). Business cycle turning points, a new coincident
index, and tests of duration dependence based on a dynamic factor model with
regime switching. Review of Economics and Statistics, 80(2), 188–201.

Kim, C.-J., & Nelson, C. R. (1999a). Friedman’s plucking model of business fluctu-
ations: Tests and estimates of permanent and transitory components. Journal
of Money, Credit and Banking, 31, 317–334.

Kim, C.-J., & Nelson, C. R. (1999b). Has the U.S. economy become more stable? A
bayesian approach based on a Markov-switching model of the business cycle.
Review of Economics and Statistics, 81(4), 608–616.

Kim, C.-J., & Nelson, C. R. (1999c). State-space models with regime switching.
Cambridge, MA: The MIT Press.

Kohonen, T. (2001). Self-organizing maps. Berlin: Spring-Verlag.
Lo, M. C., & Piger, J. (2005). Is the response of output to monetary policy asymmet-

ric? Evidence from a regime-switching coefficients model. Journal of Money,
Credit and Banking, 37, 865–887.

Manela, A., & Moreira, A. (2017). News implied volatility and disaster concerns.
Journal of Financial Economics, 123(1), 137–162.

Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014). The evolution of boost-
ing algorithms: From machine learning to statistical modelling. Methods of
Information in Medicine, 6(1), 419–427.

McCracken, M. W., & Ng, S. (2015). Fred-md: A monthly database for macroe-
conomic research. St. Louis Federal Reserve Bank Working Paper no. 2015-
012B.

Ng, S. (2014). Boosting recessions. Canadian Journal of Economics, 47(1), 1–34.
Owyang, M. T., Piger, J., &Wall, H. J. (2015). Forecasting national recessions using

state-level data. Journal of Money, Credit and Banking, 47(5), 847–866.

636 Jeremy Piger

Piger, J. (2009). Econometrics: Models of regime changes. In R. A. Meyers (Ed.),
Encyclopedia of complexity and system science (pp. 2744–2757). Springer.

Qi, M. (2001). Predicting u.s. recessions with leading indicators via neural network
models. International Journal of Forecasting, 17, 383–401.

Ravn, M., & Sola, M. (2004). Asymmetric effects of monetary policy in the united
states. Federal Reserve Bank of St. Louis Review, 86, 41–60.

Rudebusch, G., &Williams, J. (2009). Forecasting recessions: The puzzle of the en-
during power of the yield curve. Journal of Business and Economic Statistics,
27(4), 492–503.

Sato, A., & Yamada, K. (1995). Generalized learning vector quantization. In D. T.
G. Tesauro & T. Leen (Eds.), Advances in neural information processing
systems (pp. 423–429). Elsevier, North Holland.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5,
197–227.

Sims, C. A., & Zha, T. (2006). Were there regime switches in U.S. monetary policy?
American Economic Review, 96(1), 54–81.

Stock, J. H., &Watson, M. W. (2002). Forecasting using principal components from
a large number of predictors. Journal of the American Statistical Association,
97, 1167–1179.

Stock, J. H., & Watson, M. W. (2014). Estimating turning points using large data
sets. Journal of Econometrics, 178(1), 368–381.

Turner, C. M., Startz, R., & Nelson, C. R. (1989). A Markov model of heteroskedas-
ticity, risk, and learning in the stock market. Journal of Financial Economics,
25(1), 3–22.

Vishwakarma, K. (1994). Recognizing business cycle turning points by means of a
neural network. Computational Economics, 7, 175–185.

Ward, F. (2017). Spotting the danger zone: Forecasting financial crises with classifi-
cation tree ensembles and many predictors. Journal of Applied Econometrics,
32, 359–378.

	Part I Introduction
	Sources and Types of Big Data for Macroeconomic Forecasting
	Philip ME Garboden
	Understanding What's Big About Big Data
	How big is big?
	The challenges of big data

	Sources of Big Data for Forecasting
	Financial market data
	E-commerce and scanner data
	Mobile phones
	Search data
	Social network data
	Text and media data
	Sensors, and the internet of things
	Transportation data
	Other administrative data
	Other potential data sources

	Conclusion
	References

	Part II Capturing Dynamic Relationships
	Dynamic Factor Models
	Catherine Doz and Peter Fuleky
	Introduction
	From Exact to Approximate Factor Models
	Exact factor models
	Approximate factor models

	Estimation in the Time Domain
	Maximum likelihood estimation of small factor models
	Principal component analysis of large approximate factor models
	Generalized principal component analysis of large approximate factor models
	Two-step and quasi-maximum likelihood estimation of large approximate factor models
	Estimation of large approximate factor models with missing data

	Estimation in the Frequency Domain
	Estimating the Number of Factors
	Forecasting with Large Dynamic Factor Models
	Targeting predictors and other forecasting refinements

	Hierarchical Dynamic Factor Models
	Structural Breaks in Dynamic Factor Models
	Markov-switching dynamic factor models
	Time varying loadings

	Conclusion
	References

	Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs
	Martin Feldkircher, Florian Huber, and Michael Pfarrhofer
	Introduction
	Modeling Relations Across Units
	Panel VAR models
	Restrictions for large-scale panel models
	Global vector autoregressive models
	Factor-augmented vector autoregressive models
	Computing forecasts

	Empirical Application
	Data and model specification
	Evaluating forecasting performance
	Results

	Summary
	Appendix A: Details on prior specification
	References

	Large Bayesian Vector Autoregressions
	Joshua C. C. Chan
	Introduction
	Vector autoregressions
	Likelihood functions

	Priors for Large Bayesian VARs
	The Minnesota prior
	The natural conjugate prior
	The independent normal and inverse-Wishart prior
	The stochastic search variable selection prior

	Large Bayesian VARs with Time-Varying Volatility, Heavy Tails and Serial Dependent Errors
	Common stochastic volatility
	Non-Gaussian errors
	Serially dependent errors
	Estimation

	Empirical Application: Forecasting with Large Bayesian VARs
	Data, models and priors
	Forecast evaluation metrics
	Forecasting results

	Further Reading
	Appendix A: Data
	Appendix B: Sampling from the Matrix Normal Distribution
	References

	Volatility Forecasting in a Data Rich Environment
	Mauro Bernardi, Giovanni Bonaccolto, Massimiliano Caporin, Michele Costola
	Introduction
	Classical Tools for Volatility Forecasting: ARCH models
	Univariate GARCH Models
	Multivariate GARCH Models
	Dealing with large dimension in multivariate models

	Stochastic Volatility Models
	Univariate stochastic volatility models
	Multivariate stochastic volatility models
	Improvements on classical models
	Dealing with large dimensional models

	Volatility Forecasting with High Frequency Data
	Measuring realized variances
	Realized variance modelling and forecasting
	Measuring and modelling realized covariances
	Realized (co)variance tools for large dimensional settings
	Bayesian tools

	Conclusion
	References

	Neural Networks
	Thomas R. Cook
	Introduction
	Fully connected networks
	Estimation
	Example: XOR network

	Design considerations
	Activation functions
	Model shape
	Weight initialization
	Regularization
	

	RNNs and LSTM
	Encoder-Decoder
	Empirical application: unemployment forecasting
	Data
	Model specification
	Model training
	Results

	Conclusion
	References

	Part III Seeking Parsimony
	Penalized Time Series Regression
	Anders B. Kock, Marcelo C. Medeiros, and Gabriel F. R. Vasconcelos
	Introduction
	Notation
	Linear Models
	Autoregressive models
	Autoregressive distributed lag models
	Vector autoregressive models
	Further models

	Penalized Regression and Penalties
	Ridge regression
	Least absolute shrinkage and selection operator (LASSO)
	Adaptive Lasso
	Elastic net
	Adaptive elastic net
	Group Lasso
	Other penalties and methods

	Theoretical Properties
	Practical Recommendations
	Selection of the penalty parameters
	Computer implementations

	Simulations
	Empirical Example: Inflation Forecasting
	Overview
	Data
	Methodology
	Results

	Conclusions
	References

	Principal Component and Static Factor Analysis
	Jianfei Cao, Chris Gu, and Yike Wang
	Principal Component Analysis
	Introduction
	Variance maximization
	Reconstruction error minimization
	Related methods

	Factor Analysis with Large Datasets
	Factor model estimation by the principal component method

	Regularization and Machine Learning in Factor Models
	Machine learning methods
	Model selection targeted at prediction

	Policy Evaluation with Factor Model
	Rubin's model and ATT
	Interactive fixed-effects model
	Synthetic control method

	Empirical Application: Forecasting in Macroeconomics
	Forecasting with diffusion index method
	Forecasting augmented with machine learning methods
	Forecasting with PLS and sparse PLS
	Forecasting with ICA and sparse PCA

	Empirical Application: Policy Evaluation with Interactive Effects
	Findings based on Monte Carlo experiments
	Empirical findings

	References

	Subspace Methods
	Tom Boot and Didier Nibbering
	Introduction
	Notation
	Two Different Approaches to Macroeconomic Forecasting
	Forecast combinations
	Principal component analysis, diffusion indices, factor models

	Subspace Methods
	Complete subset regression
	Random subset regression
	Random projection regression
	Compressed regression

	Empirical Applications of Subspace Methods
	Macroeconomics
	Microeconomics
	Finance
	Machine learning

	Theoretical Results: Forecast Accuracy
	Mean squared forecast error
	Mean squared forecast error bounds
	Theoretical results in the literature

	Empirical Illustrations
	Empirical application: FRED-MD
	Empirical application: stock2002forecasting

	Discussion
	References

	Variable Selection and Feature Screening
	Wanjun Liu and Runze Li
	Introduction
	Marginal, Iterative and Joint Feature Screening
	Marginal feature screening
	Iterative feature screening
	Joint feature screening
	Notations and organization

	Independent and Identically Distributed Data
	Linear model
	Generalized linear model and beyond
	Nonparametric regression models
	Model-free feature screening
	Feature screening for categorical data

	Time-dependent Data
	Longitudinal data
	Time-series data

	Survival Data
	Cox model
	Feature screening for Cox model

	Acknowledgements:
	References

	Part IV Dealing with Model Uncertainty
	Frequentist Averaging
	Felix Chan, Laurent Pauwels and Sylvia Soltyk
	Introduction
	Background: Model Averaging
	Forecast Combination
	The problem
	Forecast criteria
	MSFE
	MAD

	Density Forecasts Combination
	Optimal weights
	Theoretical discussions
	Extension: method of moments

	Conclusion
	Technical Proofs
	References

	Bayesian Model Averaging
	Paul Hofmarcher and Bettina Grün
	Introduction
	BMA in Economics
	Jointness
	Functional uncertainty
	Statistical Model and Methods
	Model specification
	Regression parameter priors
	Model priors

	Independent model priors
	Dependent model priors
	Dirichlet process model priors
	Inference
	Post-processing

	Application
	Data description
	Exploratory data analysis
	BMA results
	Iterations matter
	Assessing the forecasting performance

	Summary
	References

	Bootstrap Aggregating and Random Forest
	Tae-Hwy Lee, Aman Ullah and Ran Wang
	Introduction
	Bootstrap Aggregating and Its Variants
	Bootstrap aggregating (Bagging)
	Sub-sampling aggregating (Subagging)
	Bootstrap robust aggregating (Bragging)
	Out-of-Bag Error for Bagging

	Decision Trees
	The structure of a decision tree
	Growing a decision tree for classification: ID3 and C4.5
	Growing a decision tree for classification: CART
	Growing a decision tree for regression: CART
	Variable importance in a decision tree

	Random Forests
	Constructing a random forest
	Variable importance in a random forest
	Random forest as the adaptive kernel functions

	Recent Developments of Random Forest
	Extremely randomized trees
	Soft decision tree and forest

	Applications of Bagging and Random Forest in Economics
	Bagging in economics
	Random forest in economics

	Summary
	References

	Boosting
	Jianghao Chu, Tae-Hwy Lee, Aman Ullah and Ran Wang
	Introduction
	AdaBoost
	AdaBoost algorithm
	An example
	AdaBoost: statistical view

	Extensions to AdaBoost Algorithms
	Real AdaBoost
	LogitBoost
	Gentle AdaBoost

	L2Boosting
	Gradient Boosting
	Functional gradient descent
	Gradient boosting algorithm
	Gradient boosting decision tree
	Regularization
	Variable importance

	Recent Topics in Boosting
	Boosting in nonlinear time series models
	Boosting in volatility models
	Boosting with momentum (BOOM)
	Multi-layered gradient boosting decision tree

	Boosting in Macroeconomics and Finance
	Boosting in predicting recessions
	Boosting diffusion indices
	Boosting with Markov-switching
	Boosting in financial modeling

	Summary
	References

	Density Forecasting
	Federico Bassetti, Roberto Casarin and Francesco Ravazzolo
	Introduction
	Computing Density Forecasts
	Distribution assumption
	Bootstrapping
	Bayesian inference

	Density combinations
	Bayesian model averaging
	Linear opinion pool
	Generalized opinion pool

	Density forecast evaluation
	Absolute accuracy
	Relative accuracy
	Forecast calibration

	Monte Carlo methods for predictive approximation
	Accept-reject
	Importance sampling
	Metropolis-Hastings
	Constructing density forecasting using GPU

	Conclusion
	Appendix
	References

	Forecast Evaluation
	Mingmian Cheng, Norman R. Swanson and Chun Yao
	Forecast Evaluation Using Point Predictive Accuracy Tests
	Comparison of two non-nested models
	Comparison of two nested models
	A predictive accuracy test that is consistent against generic alternatives
	Comparison of multiple models

	Forecast Evaluation Using Density Based Predictive Accuracy Tests
	The Kullback-Leibler information criterion approach
	A predictive density accuracy test for comparing multiple misspecified models

	Forecast Evaluation Using Density Based Predictive Accuracy Tests That Are Not Loss Function Dependent: The Case of Stochastic Dominance
	Robust forecast comparison

	References

	Part V Further Issues
	Unit Roots and Cointegration
	Stephan Smeekes and Etienne Wijler
	Introduction
	General Setup
	Transformations to Stationarity and Unit Root Pre-Testing
	Unit Root Test Characteristics
	Multiple Unit Root Tests

	High-Dimensional Cointegration
	Modelling Cointegration through Factor Structures
	Sparse Models

	Empirical Applications
	Macroeconomic Forecasting Using the FRED-MD Dataset
	Unemployment Nowcasting with Google Trends

	Conclusion
	References

	Turning Points and Classification
	Jeremy Piger
	Introduction
	The Forecasting Problem
	Real-time classification
	Classification and economic data
	Metrics for evaluating class forecasts

	Machine Learning Approaches to Supervised Classification
	Cross validation
	Naïve Bayes
	k-nearest neighbors
	Learning vector quantization
	Classification trees
	Bagging, random forests, and extremely randomized trees
	Boosting

	Markov-Switching Models
	Application
	Conclusion
	References

	Robust Methods for High-dimensional Regression and Covariance Matrix Estimation
	Marco Avella-Medina
	Introduction
	Robust Statistics Tools
	Huber contamination models
	Influence function and M-estimators

	Robust Regression in High Dimensions
	A class robust M-estimators for generalized linear models
	Oracle estimators and robustness
	Penalized M-estimator
	Computational aspects
	Robustness properties

	Robust Estimation of High Dimensional Covariance Matrices
	Sparse covariance matrix estimation
	The challenge of heavy tails
	Revisting tools from robust statistics
	On the robustness properties of the pilot estimators

	Further Extensions
	Generalized additive models
	Sure independence screening
	Precision matrix estimation
	Factor models and high frequency data

	Conclusion
	References

	Frequency Domain
	Felix Chan and Marco Reale
	Introduction
	Background
	Granger Causality
	Wavelet
	Wavelet Forecasting

	ZVAR and Generalised Shift Operator
	Generalized Shift Operator
	ZVAR Model
	Monte Carlo Evidence

	Conclusion
	References

	Hierarchical Forecasting
	George Athanasopoulos, Puwasala Gamakumara, Anastasios Panagiotelis, Rob J Hyndman and Mohamed Affan
	Introduction
	Hierarchical Time Series
	Point Forecasting
	Single-level approaches
	Point forecast reconciliation

	Hierarchical Probabilistic Forecasting
	Probabilistic forecast reconciliation in the Gaussian framework
	Probabilistic forecast reconciliation in the non-parametric framework

	Australian GDP
	Empirical Application Methodology
	Models
	Evaluation

	Results
	Base forecasts
	Point forecast reconciliation
	Probabilistic forecast reconciliation

	Conclusions
	Appendix
	References

