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a b s t r a c t

We propose a simple machine-learning algorithm known as Learning Vector Quantization
(LVQ) for the purpose of identifying new U.S. business cycle turning points quickly in real
time. LVQ is used widely for real-time statistical classification in many other fields, but has
not previously been applied to the classification of economic variables, to the best of our
knowledge. The algorithm is intuitive and simple to implement, and easily incorporates
salient features of the real-time nowcasting environment, such as differences in data
reporting lags across series. We evaluate the algorithm’s real-time ability to establish new
business cycle turning points in the United States quickly and accurately over the past five
NBER recessions. Despite its relative simplicity, the algorithm’s performance appears to be
very competitive with those of commonly used alternatives.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

A traditional view of the US business cycle is that of
alternating phases of expansion and recession, where an
expansion corresponds to widespread, persistent growth
in economic activity, and a recession consists of a
widespread, relatively rapid, decline in economic activity.
The timely identification of the turning points between
these phases, or peaks and troughs, is of considerable
importance to policymakers, financial markets, firms, and
individuals. A substantial body of literature has focused
on the prediction of future turning points using a variety
of leading economic and financial time series, with some
limited success.1 A smaller body of literature has focused
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1 For recent contributions to this literature, see Berge (2015), Chauvet

and Potter (2005), Kauppi and Saikkonen (2008), Ng (2014) and
Rudebusch and Williams (2009).
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on the identification of turning points that have already
occurred, using economic variables that are coincident
with the business cycle.

The problem of the ex-post identification of turning
points is of particular interest, because there are many ex-
amples of turning points that have not been predicted ex-
ante. This spotty forecasting record means that economic
agents are left trying to determine whether a new busi-
ness cycle phase has already begun. Even this is a difficult
task, with new turning points usually not being identified
until many months after they occur. The official chronol-
ogy of business cycle turning points in the United States
is provided by the National Bureau of Economic Research’s
(NBER) Business Cycle Dating Committee, which has his-
torically announced new turning points with a lag of be-
tween four and 21 months. Statistical models improve
on the NBER’s timeliness considerably, with little differ-
ence in the timing of the turning point dates established.2

2 See for example Chauvet and Hamilton (2006) and Chauvet and Piger
(2008).

r B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ijforecast.2016.04.006
http://www.elsevier.com/locate/ijforecast
http://www.elsevier.com/locate/ijforecast
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijforecast.2016.04.006&domain=pdf
mailto:andrea.giusto@dal.ca
mailto:jpiger@uoregon.edu
http://dx.doi.org/10.1016/j.ijforecast.2016.04.006


A. Giusto, J. Piger / International Journal of Forecasting 33 (2017) 174–184 175
However, in general these models don’t identify turning
points until severalmonths after they occurred. As a recent
example of this, Hamilton (2011) surveys a wide range of
statistical models that were in place to identify business
cycle turning points in real time, and finds that such mod-
els did not send definitive signals regarding the December
2007 NBER peak until late 2008.3 One important reason for
these identification lags is data reporting lags, as many key
coincident indicators are released only with a lag of one to
two months. Another factor is the need for several months
of negative or positive data to accumulate before a defini-
tive turning point signal can be uncovered.

The essence of real-time turning point identification
is a problem of statistical classification. Given a set of
observations on economic indicators, we wish to deter-
mine which of two ‘‘classes’’ these observations belong
to, where the classes are expansion and recession. Much
of the literature on the identification of business cycle
turning points has focused on the use of parametric sta-
tistical models to link the observed data to the classes.
For example, Chauvet (1998) proposed a dynamic fac-
tor model with Markov-switching (DFMS) for identify-
ing expansion and recession phases from a group of co-
incident indicators, and Chauvet and Hamilton (2006)
and Chauvet and Piger (2008) evaluated the performance
of variants of this DFMS model for identifying NBER
turning points in real time. Fossati (in press) alternatively
evaluated the real-time performance of a dynamic probit
specification linking NBER expansion and recession phase
indicators to observed data. If the true data generating
process (DGP) linking the observed data to the classes is
known, then such parametric models allow for the con-
struction of an optimal Bayesian classifier of a period’s data
as belonging to either the expansion or recession class.

However, in the absence of a known true DGP, non-
parametric methods may be more robust, as they do not
rely on the specification of the DGP. Of particular inter-
est are non-parametric classification techniques based on
machine learning algorithms, which have been utilized
successfully for real-time classification in a large number
of existing studies outside economics. Somewhat surpris-
ingly, applications of these algorithms to the problem of
the real-time classification of macroeconomic data to ex-
pansion or recession phases, and the resulting identifica-
tion of business cycle turning points, are rare. Qi (2001)
considered the ability of an artificial neural network to pro-
duce out-of-sample forecasts of US business cycle turn-
ing points between 1972 and 1995. In recent work, Berge
(2015) evaluated the ability of a nonparametric forecasting
model with predictors selected via a boosting algorithm to
forecast and nowcast business cycle turning points since
1985. Importantly, this latter paper shows that the perfor-
mance of the boosting algorithm improves on a Bayesian
averaging of forecasts produced by parametric models.4

3 The NBER announced the December 2007 peak on December 1, 2008.
4 A substantial number of studies have usednon-parametric algorithms

to establish historical, in-sample chronologies of business cycle turning
points. Examples include Berge and Jordá (2011), Fushing, Chen, Berge,
and Jordá (2010), Harding and Pagan (2006), Stock and Watson (2010,
2014), and Vishwakarma (1994). The objective of our study differs from
those of these studies in that we take the historical NBER chronology as
given, and focus on the identification of turning points in end-of-sample
data that have not yet been classified by the NBER.
In this paper, we use a non-parametric classification al-
gorithm known as Learning Vector Quantization (LVQ) to
classify economic indicators as arising from either expan-
sion or recession regimes in real time.5 LVQ is used widely
in real-time classification problems in a number of fields
and applications, including production quality monitoring,
power load forecasting, speech recognition, odor classifi-
cation, intrusion detection, beer grading, and email spam
detection. LVQ takes both historical data and its classifica-
tion as inputs to train the algorithm. For this historical clas-
sification, we use the available NBER chronology. Based on
this training, new data points that have not yet been clas-
sified by the NBER are then labeled as arising from the ex-
pansion or recession regimes, which provides a real-time
tracking of new business cycle turning points. Our focus is
on the algorithm’s ability to provide a timely and accurate
identification of new NBER business cycle turning points.

In addition to the potential advantages of a non-
parametric approach when the DGP is unknown, LVQ also
has computational advantages over the parametric meth-
ods that have been frequently used to identify business
cycles turning points based on a group of coincident indica-
tors. The algorithm is very simple to implement, generally
taking only seconds of computer time. In contrast, the pa-
rameters of the DFMSmodel or a dynamic probit specifica-
tion are generally estimated via computationally intensive
Bayesian techniques. Frequentist approaches to estimation
can also be used, but these require approximations, as the
exact likelihood function for these models is generally not
available. Also, the LVQ algorithm incorporates the possi-
bility of data series arriving with different reporting lags,
which is a salient real-world feature of the nowcasting en-
vironment that is not easy to handle with standard para-
metric models.

In our empirical analysis, we evaluate the LVQ algo-
rithm’s ability to classify US macroeconomic data into
expansion and recession phases in real time, with partic-
ular emphasis on the timely identification of new busi-
ness cycle turning points. The data to be classified are four
monthly coincident series that have been highlighted by
the NBER as providing information regarding business cy-
cle phases. We consider an analyst applying the LVQ algo-
rithm to this data each month between December 1976
and August 2013 in order to identify new business cy-
cle turning points. Importantly, we use a vintage data set
that is an accurate reflection of the information that would
have been available to the analyst in real time. This is
an important difference from the small number of exist-
ing studies that use non-parametric approaches to identify
business cycle turning points, which have conducted their
forecast evaluations using fully revised data. Also, as the
economic indicators thatwe consider are releasedwith dif-
ferent reporting lags, we allow the analyst in our forecast
evaluation to update inferences about new business cycle
turning points at different points during the month in real
time as new data are released. The LVQ algorithm’s perfor-
mance over this period is impressive relative to the results

5 LVQ algorithms and related extensions are described in detail by
Kohonen (2001).
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Fig. 1. Bivariate random samples generated from two independent bivariate normal distributions. The dataset represented with circles has mean (0, 0),
variance 3 (along both dimensions), and covariance 1. The dataset representedwith crosses hasmean (5, 1), variance 3, and covariance−2. Panel B contains
the separation manifold defined by the discriminant function in Eq. (1).
reported in the existing literature, particularly with regard
to business cycle peaks. As one example of this, the LVQ al-
gorithmwould have called the peak of the Great Recession
on June 6, 2008, which is ahead of any of the procedures
reviewed by Hamilton (2011). The established date of this
peak would have been January 2008, which is very close to
the NBER peak date of December 2007.

The rest of the paper proceeds as follows. Section 2
provides a general description of the LVQ algorithm.
Section 3 describes the performance of the LVQ algorithm
for identifying new business cycle turning points in the
United States. Section 4 concludes.

2. Classification using learning vector quantization

2.1. Data classification

The issue of automatic data classification has long been
studied in statistics, with the traditional approach based
on the calculation of conditional probabilities. Consider the
problem of assigning anm-dimensional real vector x ∈ Rm

to a class belonging to the set {Ck}
K
k=1. Let p(Ck) denote

the a priori probability that a vector belongs to class k, and
p(x|x ∈ Ck) be the probability that sample x is observed if it
belongs to class Ck. The statistical approach to classification
uses the discriminant functions:

δk = p(x|x ∈ Ck)p(Ck),

where pattern x is assigned to class Ck, with Ck = maxk{δk}.
This approach has several theoretical advantages, includ-
ing the property that the probability of misclassification
is minimized. From a practical point of view, though, the
desirable theoretical properties of this classification rule
may not be exploitable because of a lack of knowledge of
the probabilities that govern the DGP. The usual approach
in practical statistical classification consists of deriving a
good estimate of the discriminant functions over the en-
tire sample space of x.

To make things more concrete, consider panel (a)
of Fig. 1, which shows two random samples of equal
size, drawn from two independent bivariate normal
distributions. In terms of the notation used above, we have
that x ∈ R2, the set of classes is {C1, C2}, the a priori prob-
ability of each class is 1

2 , and the conditional probabilities
are calculated as:

p(x|x ∈ Ck) =
1

2π |Σk|
1/2

exp

−

1
2 (x − µk)

′

× Σ−1
k (x − µk)


, k = 1, 2, (1)

where µk and Σk denote the mean and variance–covari-
ance matrix of the two bivariate normal distributions, re-
spectively. As is clear from Fig. 1, this classification prob-
lem is non-trivial, since the distributions describing the
two classes have overlapping support.We classify the sam-
ples by defining a separation manifold between the two
classes determined by the discriminant functions. The sep-
arating manifold partitions R2 into subsets over which
each discriminant function is maximal. Panel (b) of Fig. 1
shows the separating manifold for these data. Once the
boundary between the two regions has been established, it
is easy to build a Bayesian classification system that assigns
class 1 to newdata points that lie below the curve and class
2 to those above it. Note that the optimality of this classi-
fier system does not imply the perfection of its classifica-
tion ability, but only the minimization of the probability of
an erroneous classification.

Vector quantization (VQ) is an alternative strategy that
can be used to obtain a separating manifold in the space of
interest, but it is based on completely different principles
to the Bayesian classifier. A VQ classifier relies on the
definition of certain key points, called codebook vectors, in
the data space. Each codebook vector is used to represent
one class, and there can bemore than one codebook vector
per class. Once these codebook vectors have been singled
out, data are classified as belonging to the same class as the
nearest codebook vector in the Euclidean metric.6

Consider, for example, the situation depicted in Panel
(a) of Fig. 2: two codebook vectors representing two

6 The Euclidean metric is only one of many possible metrics that could
be used, but it is the dominant choice in applied work.
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Fig. 2. Panel (a) illustrates the nearest neighbor classification rule. Vector x belongs to class 1, while vector y belongs to class 2. Panel (b) shows a
hypothetical placement of the codebook vectors for the data shown in Fig. 1.
different classes are plotted with a diamond and a crossed
square, respectively. New data points of unknown clas-
sification are classified by means of a ‘‘nearest neigh-
bor’’ strategy. For example, vector x in Fig. 2 would be
classified as belonging to class 1, while vector y would be
assigned to class 2. In short, a VQ classifier is based on quan-
tizing (i.e., approximating) all of the salient features of the
data into the codebook vectors, which can be thought of
as the most representative points of each class. Just like in
the Bayesian classifier, the codebook vectors define a sep-
arating manifold in the space R2, through the midplanes
between neighboring pairs of vectors. For the data rep-
resented in Fig. 1, the codebook vectors may be placed
as in panel (b) of Fig. 2, where the midplanes between
neighboring pairs of vectors would approximate the opti-
mal Bayesian separation curve. A key difference between
Bayesian and VQ classifiers is thatwhile the Bayesian strat-
egy seeks to approximate the discriminant functions over
the whole sample space, the VQ classifier may focus on a
smaller region of this space, if this is wheremost of the rel-
evant information regarding classification is.

The identification of good codebook vectors may seem
difficult without prior knowledge of (or assumptions
about) the statistical distributions involved. However,
the algorithms described in the next section solve this
problem in a surprisingly simple and computationally light
manner.

2.2. LVQ algorithms

Learning vector quantization is an adaptive learning al-
gorithm in which the locations of the codebook vectors
are established through adjustments of decreasing mag-
nitudes. Let X be a collection of N observations xn ∈ Rm,
n = 1, . . . ,N , for which the classification in the set {Ck}

K
k=1

is known. Let there be N̄ ∈ [K ,N] codebook vectors mi ∈

Rm, i = 1, . . . , N̄ , with given initial locations. Finally, let
g = 1, 2, . . . ,G denote iterations of the algorithm, and
let αg be a decreasing sequence of real numbers bounded
between zero and one. Given the initial locations of the N̄
codebook vectors, the LVQ algorithm makes adjustments
to their locations through the following steps.
Algorithm 1 (LVQ).

1. Let g = 1 and n = 1.
2. Identify the codebook vector mg

c that is closest to the
data point xn in the Euclidean metric:

c = argmin
i∈{1,...,N̄}


∥xn − mg

i ∥

.

3. Adjust the location of the codebook vector with index c
according to the following rule:mg+1

c = mg
c + αg(xn − mg

c )
if xn and mg

c belong to the same class
mg+1

c = mg
c − αg(xn − mg

c ) otherwise.

4. If n + 1 ≤ N , let n = n + 1, and repeat from step 2.
Otherwise, let n = 1 and g = g + 1 and repeat from
step 2 if g ≤ G; otherwise stop.

The LVQ algorithm is very simple. At each iteration, a
new data vector is considered, and its nearest codebook
vector is identified. If this codebook vector agrees with the
actual classification of the data vector, its location ismoved
closer to the data vector. If the selected codebook vector
does not classify the data vector correctly, then it is moved
farther away from the data vector. These adjustments are
made in a simple linear fashion. Fig. 3 shows a hypothetical
example of the two cases. These calculations are repeated
for each data vector in the data set. When they have all
been used, a new iteration is started with a decrease in the
weight αg , which controls the size of the adjustment to the
codebook vectors. This continues for G iterations.7

7 The algorithm that we have laid out is the basic LVQ algorithm, which
has been shown to work well in many practical applications. Various
modifications of this algorithm that may improve its classification ability
in some contexts have been proposed. These include LVQ with nonlinear
updating rules, as in the generalized LVQ algorithm of Sato and Yamada
(1995), as well as LVQ employed with alternatives to the Euclidean
measure of distance, such as the generalized relevance LVQ of Hammer
and Villmann (2002). The latter allows for an adaptive weighting of the
data series in the dimensions that are most helpful for classification, and
may be particularly useful when applying LVQ to large datasets.
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Fig. 3. Adjustments to the codebook vectormc in the two cases in whichmc either (a) classifies x correctly or (b) does not.
2.3. Class prediction

The LVQ algorithms described in the previous section
require a sample of data xn ∈ Rm, n = 1, . . . ,N , for
which the classification in the set {Ck}

K
k=1 is known. This

sample of data is used to produce codebook vectors via
the LVQ algorithm, a process that is typically referred to as
‘‘training’’ the classifier. Once this training is complete and
the codebook vectors have been established, the classifier
can be used to predict the classes of new observations
for which the true class is not yet known. This process
is analogous to the in-sample parameter estimation and
out-of-sample prediction steps employed with parametric
statistical models.

The specifics of class prediction is as follows. Suppose
that we have a new data point, xN+1, for which the
classification is unknown. We can use the LVQ classifier
to predict the class for this data point by first finding the
codebook vectormc that is closest to xN+1 in the Euclidean
metric:

c = argmin
i∈{1,...,N̄}

{∥xN+1 − mi∥} .

We then assign xN+1 to the same class as is assigned to the
codebook vectormc .

In some applications, the new data point to be classified
may be observed only partially. This is particularly true
for our application to the identification of business cycle
turning points in real time, since relevant data are released
at different times and with varying reporting lags. In such
cases, class prediction is achieved simply by finding the
codebook vectormc that is closest to xN+1 in the Euclidean
metric for the elements of xN+1 that are observed.

2.4. Implementing the LVQ algorithm

In order to implement the LVQ algorithm, we must de-
fine a modest number of parameters, namely the number
of codebook vectors, N̄ , the decay rate, α, and the num-
ber of simulations G. For each of these, we follow the rec-
ommendations given by Kohonen (2001), which are based
on a survey of a large number of empirical implementa-
tions of the LVQ algorithm. These recommendations are
implemented in the R package ‘‘class’’, which we use to
generate our empirical results below. The specifics are as
follows. We assign the same number of codebook vectors
to each class, with this number being equal to the num-
ber of data points in the training sample that fall into the
less frequently occurring class. In the context of identify-
ing expansions vs. recessions, the class of recessions oc-
curs less frequently. Thus, the total number of codebook
vectors is set equal to twice the number of recession peri-
ods in the training period, with half of these being assigned
to the recession class and half to the expansion class. We
set α, which controls the decay rate in the LVQ algorithm,
equal to 0.3.8 Finally, the number of algorithm iterations,G,
is set so as to achieve the convergence of the codebook vec-
tors. We define convergence as being when the individual
elements of the codebook vectors move by no more than
10−20 through one complete iteration of the algorithm.

Finally, to start the LVQ algorithm, we must initialize
the codebook vectors. This initialization can affect the
resulting class prediction, as the final placement of the
codebook vectors in an LVQ algorithm is not invariant
to the initialization. Here, we follow a simple automatic
procedure. First, the codebook vectors that are assigned
to the recession class are initialized to the actual data
vectors from the recession periods in our training sample.
For expansions, where there are fewer codebook vectors
than data vectors, we initialize the codebook vectors to a
randomly-drawn set of data vectors from the expansion
periods in our training sample. In our empirical analysis,
we base our turning point identification procedure on
100 runs of the LVQ algorithm, where different random
initializations for the expansion codebook vectors are used
in each run. This is discussed in more detail below.9

8 Kohonen (2001) argues that the classification results from LVQ should
be largely invariant to the choice of alternative values of α, provided that
αg

→ 0 as g → ∞, which ensures that the sizes of the codebook
vector updates eventually converge to zero. We have verified this for our
application by generating results for nine alternative values of α between
0.1 and 0.9, in increments of 0.1. The results across these alternative
values of α were nearly identical.
9 In the Appendix A, we present results for LVQ algorithms with

alternative numbers of codebook vectors, as well as for an LVQ algorithm
with an alternative, data-based, approach to determining the initial
locations of the codebook vectors for the expansion class.
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3. Real-time identification of turning points

In this section, we evaluate the performance of the
LVQ classifier for the real-time identification of new
US business cycle turning points over the period from
November 1976 to July 2013, over which there were five
completeNBER recession episodes,meaning five peaks and
troughs. We evaluate both the accuracy and the speed
withwhich turning points are identified, with the eventual
NBER chronology serving as the standard for accuracy.

3.1. Data to be classified

The data series that we use as inputs to the algo-
rithm are the four monthly coincident series that are high-
lighted by the NBER in their decisions about the timing
of US business cycle turning points, namely (1) growth in
non-farm payroll employment (E), (2) growth in the in-
dustrial production index (I), (3) growth in real personal
income excluding transfer receipts (P), and (4) growth in
realmanufacturing and trade sales (M). These series are the
focus of the existing literature on the real-time identifica-
tion of US business cycle turning points.10 The LVQ algo-
rithm could easily be extended to consider larger numbers
of indicators, with little increase in computational com-
plexity. However, we restrict our attention to these four
series in our primary analysis in order to maintain com-
parability with studies that use alternative approaches to
identify turning points. We will consider the results from
including additional series in Section 3.4.

We collect monthly data from February 1967 to July
2013, and use the NBER’s recession chronology over this
sample period to define expansion and recession months.
We consider an analyst who applies the LVQ algorithm in
real time each month between December 1976 and Au-
gust 2013. To replicate the data that would have been
available to this analyst accurately, we use a dataset that
contains each release, or vintage, of these four coincident
variables over eachmonth in our evaluation period. Specif-
ically, we collect a time series for each variable as it would
have appeared at its monthly release, beginning with data
released in December 1976, and ending with data released
in August 2013. For each vintage, the sample collected be-
gins in February 1967 and ends with the most recent data
available for that vintage. We collect this vintage dataset
beginning with the dataset used by Chauvet and Piger
(2008), which was collected partly from the Federal Re-
serve Bank of Philadelphia real-timedata archive described
by Croushore and Stark (2001), and partly from past re-
leases by government statistical agencies. This dataset was
then extended to include data for the recent ‘‘Great Re-
cession’’ and beyond using data releases from the Bureau
of Economic Analysis and the Federal Reserve Bank of St.
Louis ALFRED database.

The NBER recession and expansion phases are persis-
tent, with the estimated probability over the 1967–2013
sample of remaining in an expansion month being equal

10 See e.g. Camacho, Perez-Quiros, and Poncela (2012), Chauvet and
Piger (2008), and Fossati (in press).
to 0.98, and the corresponding probability for recessions
months being equal to 0.9.We incorporate the information
provided by this persistence into the classification problem
by classifying a vector of data that contains both current
values and one lag of the monthly series mentioned above.
Thus, the vector to be classified is

xt = (Et , It , Pt ,Mt , Et−1, It−1, Pt−1,Mt−1)
′ .

3.2. Real-time classification environment

The real-time classification environment is as follows.
An analyst is attempting to determine whether a new
business cycle turning point has occurred in the recent
past, and is doing so in month T + 1. We assume that
the analyst updates her inferences twice during themonth,
once at the beginning of themonth, immediately following
the release of the employment series formonth T , and once
near the middle of the month, immediately following the
release of the industrial production series for month T .11
The analyst will be able to form an inference about the
business cycle phase that was in operation between the
beginning of the sample period and month T at each of
these points; however, different amounts of information
will be available for forming this inference at each point.

For each month T + 1, the LVQ classifier is trained
on a sample that extends from the beginning of the
sample to the end of month T − j, over which the NBER
classification is assumed to be known. In our analysis, j
varies across data vintages, and is set using the following
assumptions. (1) The date of a new peak or trough is
assumed to be known once it is announced by the NBER.
(2) A new peak will be announced by the NBER within
twelve months of it occurring, where twelve months is
the longest historical lag of the NBER’s announcement
of a new business cycle peak.12 This assumption allows
us to update the knowledge of the NBER phase during
long expansions, despite the lack of any official NBER
announcements over these periods. (3) Once the date of a
new turning point has been announced by the NBER, the
newNBER business cycle phase (expansion or recession) is
assumed to last at least six months.13 After training, the
analyst then attempts to assess whether a new turning
point has occurred over the period between T − j + 1
and T . That is, the classification is assumed to be unknown
over this period, and the analyst uses the LVQ classifier to
predict the eventual NBER classification.

As an example, suppose that an analyst is forming an
inference in December 1980, so that T is November 1980.

11 We could consider an analyst who also updates her inferences at the
end of month T + 1, following the release of the personal income and
manufacturing and trade sales series. However, because these releases
generally occur only a few days before the employment series release at
the beginning of month T + 2, we simply consider updates made at the
beginning of each month here.
12 The NBER announcement dates for past turning points are available
at http://nber.org/cycles/main.html.
13 These assumptions regarding the lags of knowledge of the NBER
classification aremeant to be a reasonable description of reality. However,
they are not essential for our results, which are similar for other, more
conservative assumptions.

http://nber.org/cycles/main.html
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At this point, the most recent NBER announcement was
made on June 3, 1980, and was an announcement of a
business cycle peak in January 1980. Since we assume
that this new recession phase will last a minimum of six
months, the NBER classification is then known through
July 1980, with the period from February 1980 to July
1980 classified as recession months. Thus, the value of
j in this case is four months, and the analyst would
be searching for a new business cycle trough over the
period between August 1980 and November 1980. As a
second example, suppose that the analyst was doing her
analysis in December 2005, so that T is November 2005.
Here, the most recent NBER announcement was made on
July 17, 2003, and announced the November 2001 trough
in economic activity. In this case, the value of j would
be set to 12 months, with the period from December
2001 to November 2004 classified as expansion months.
The analyst would then be searching for a new business
cycle peak over the period between December 2004 and
November 2005.

Note that when the analyst uses the LVQ classifier to
predict the class out of sample, the most recent data to
be classified will be incomplete. For example, when the
analyst applies the LVQ classifier at the beginning ofmonth
T + 1, the end-of-sample data vector xT is

xT = (ET , ET−1, IT−1, PT−1)
′ .

Here, this vector is missing the time T values of I , P andM ,
and the time T − 1 values of M . As was discussed in Sec-
tion 2.3, we classify this incomplete data vector according
to the nearest codebook vector in the dimensions onwhich
xT is not missing.

To determinewhether a new turning point has occurred
over the prediction period, we must convert the class
predictions for individual months into predictions about
a new turning point. Here, we follow Chauvet and
Piger (2008) and require three consecutive months to be
classified as a new business cycle phase prior to calling
a new turning point. This enforces the prior belief that
business cycle phases are persistent, which is consistent
with the NBER definition of a business cycle phase.
Specifically, if the most recent known NBER classification
was a business cycle trough (peak), we identify a new
business cycle peak (trough) if the LVQ classifies each
month between T − 2 and T as a recession (expansion)
month. As was discussed in Section 2.4, we base our class
prediction on 100 runs of the LVQ algorithm, where each
run is based on a different random initialization of the
codebook vectors.We consider amonth between T−2 and
T to be a recession or expansion month if at least 80% of
the runs return this classification. This 80% rule builds in a
preference against the identification of false turningpoints.
It also mirrors the rule used by Chauvet and Piger (2008)
to convert the recession probabilities from a Markov-
switching model into the identification of new turning
points, which aids the comparability of our results with
this earlier study. At the end of Section 3.3, we consider
the robustness of our results to thresholds other than 80%.

Once a new turning point has been identified, the date
of this new turning point is established to be the month
prior to the string of consecutive months that is classified
Table 1
US business cycle peaks identified in real-time.

NBER peak
date

LVQ peak
date

NBER
identification lag

LVQ
identification lag

1/1980 1/1980 123 92
7/1981 8/1981 158 126
7/1990 6/1990 267 78
3/2001 3/2001 239 216
12/2007 2/2008 335 158

Average: 224 134

Notes: The table gives NBER-established peak dates for recessions that
occur over the sample period from November 1976 to July 2013, along
with the peak date established in real time by the LVQ algorithm over
this period. Identification lags are measured as the number of days after
the last day of the NBER peak month that the NBER or LVQ peak month
was identified.

as belonging to the new business cycle phase. For example,
suppose that the most recent business cycle turning point
identified was a business cycle trough, and months T − 2
to T are classified as recession months, but month T − 3
is not. In this case, a new business cycle peak would be
established as occurring in month T − 3.14

3.3. Results

Table 1 presents the results of the turning point
classification experiment for NBER business cycle peaks,
while Table 2 shows the results for troughs. The first
column of each table shows the monthly dates of NBER
turning points over the period November 1976–July 2013,
while the third column shows the number of days between
the end of the official NBER turning point month and the
day of the corresponding turning point announcement
made by the NBER’s Business Cycle Dating Committee.
The second and fourth columns show the corresponding
results for the LVQ algorithm. The second column shows
the months that the LVQ algorithm established as turning
points at the time when it first detected a new turning
point. In cases where the turning point detected by the
LVQ algorithm matches that of an NBER turning point
reasonably well, the fourth column shows the number
of days after the end of the official NBER turning point
month that the LVQ algorithm would have detected the
turning point initially. Thus, comparing the NBER dates to
those established by the LVQ algorithm (columns 1 and
2) quantifies the accuracy of the dates established by the
LVQ algorithm, and comparing columns 3 and 4 measures
the timeliness of the LVQ algorithm for detecting NBER
turning points relative to the NBER business cycle dating
committee.

Beginning with the accuracy of the LVQ algorithm, it
is clear from the tables that the LVQ algorithm replicates

14 This decision rule uses the convention that a business cycle trough
represents the last month of a recession and a business cycle peak
represents the last month of an expansion. On the other hand, the NBER
represents these turning points as inflection points that do not necessarily
belong to either expansion or recession phases. However, previous
statistical classification exercises have confirmed that associating peak
monthswith expansions and troughmonthswith recessions provides the
best fit (see e.g. Chauvet & Piger, 2008).
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Table 2
US business cycle troughs identified in real-time.

NBER
trough date

LVQ trough
date

NBER
identification lag

LVQ
identification lag

7/1980 7/1980 341 127
11/1982 12/1982 219 136
3/1991 4/1991 631 443
11/2001 1/2002 593 308
6/2009 6/2009 446 157

Average: 446 234

Notes: The table gives NBER-established trough dates for recessions that
occur over the sample period from November 1976 to July 2013, along
with the trough date established in real time by the LVQ algorithm over
this period. Identification lags are measured as the number of days after
the last day of theNBER troughmonth that theNBER or LVQ troughmonth
was identified.

the NBER peak and trough dates very accurately. There
are no instances in which an NBER turning point date
in column 1 is not matched by a similar date produced
by the LVQ algorithm. Also, the LVQ algorithm never
produces a turning point date that does notmatch anNBER
date. In other words, the LVQ algorithm produces no false
positives and no false negatives. Furthermore, the accuracy
of the peak and trough dates is impressive. For both peaks
and troughs, the average absolute difference between the
turning point dates established by the LVQ algorithm and
the corresponding NBER dates is only 0.8 months.

These results suggest that the LVQ algorithm is a very
accurate technique for establishing the dates of NBER
turning points in real time. Having determined this, the
primary question of interest is the timeliness with which
this accurate identification is achieved. Focusing on the
fourth column of each table, the LVQ algorithm establishes
business cycle peaks with an average delay of 134 days,
and business cycle troughs with an average delay of 234
days. This is substantially faster than the NBER’s business
cycle dating committee. As the second columnof each table
shows, the committee has announced peak and trough
dates with average lag times of 224 days for peaks and
446 days for troughs. Thus, for the last five recessions,
the LVQ algorithm would have established essentially the
same turning point dates as the NBER, but an average of
three months faster for peaks and seven months faster for
troughs.

Admittedly, the NBER dating committee is not overly
concerned with timeliness, and instead has focused
historically on the establishment of correct dates. Thus, it
ismore relevant to compare the algorithmwith alternative
statistical approaches that are used in the literature. To this
end, we first compare the results from the LVQ algorithm
to those of other statistical approaches that were in use
for identifying the beginning and end of the 2007–2009
Great Recession, as summarized by Hamilton (2011). To
keep the analysis comparable, we focus on alternative
approaches that use the same four coincident series that
we use here. The LVQ procedure would have established
the business cycle peak for the most recent recession on
June 6, 2008, which is 158 days after the end of the official
NBER peak month, December 2007. In contrast, Hamilton
(2011) reports that other real-time approaches that were
in use at the time did not identify a business cycle peak
until the Fall of 2008 or the Winter of 2009.
Table 3
Average real-time identification lag: robustness to threshold.

Threshold Peaks (days) Troughs (days) False cycles

90% 136.4 319.6 0
80% 134 234.2 0
70% 97.8 205.8 1
60% 97.8 200 1
50% 97.8 200 3

Notes: The table gives the average number of days required for the LVQ
algorithm to identify NBER-established peak and trough dates, where we
vary the threshold required to signal a new turning point from the LVQ
algorithm output. For each value of this threshold, the table also shows
the number of non-NBER recession episodes (false cycles) identified by
the LVQ algorithm.

For recessions prior to the Great Recession, we compare
our results to those given by Chauvet and Piger (2008),who
investigated the real-time performance of the dynamic
factor Markov-switching (DFMS) model of Chauvet (1998)
for identifying the four NBER peak and trough dates that
occur over the period from November 1976 to June 2006.
The comparison to this analysis is particularly applicable,
as the variables to be classified and the requirements used
to convert the monthly classifications into turning point
calls are identical to those used here. Also, the DFMSmodel
is a technique that is used commonly to identify turning
points in real time.15

Chauvet and Piger (2008) find that, on average, the
DFMS model does not improve on the timeliness of the
NBER business cycle dating committee for identifying
business cycle peaks, but does improve on the NBER
by an average of 5.5 months for calling NBER business
cycle troughs. Over the same four recessions that were
covered by Chauvet and Piger (2008), the LVQ algorithm
improves on the NBER by an average of 2.3 months
for calling business cycle peaks and 6.5 months for
business cycle troughs. Thus, the LVQ algorithm in our
forecast experiment identifies both business cycle peaks
and troughs faster than the DFMS model in the forecast
experiment of Chauvet and Piger (2008). In comparing the
two sets of results, it is important to note that Chauvet
and Piger (2008) assume that the analyst only estimates
the DFMS on data sets that end with the most recent
data on manufacturing and trade sales, which puts the
DFMS model at up to a two-month disadvantage over
our implementation of the LVQ algorithm, which uses
all data as they become available.16 Even if we adjust
a full two months to allow for the maximum potential
advantage of the data analyst in our forecast experiment
over that of Chauvet and Piger (2008), the LVQ algorithm
is still competitive with DFMS, being slightly quicker
at identifying peaks and slightly slower at identifying
troughs. Thus, the LVQ algorithm appears to be promising
relative to a commonly used alternative.

15 See Camacho et al. (2012) and Chauvet and Hamilton (2006).
16 The LVQ algorithm has the ability to identify a new business cycle
turning point as of the month T employment release on the first Friday of
month T + 1, which could be nearly two months prior to the release of
the month T manufacturing and trade sales release at the end of month
T + 2.



182 A. Giusto, J. Piger / International Journal of Forecasting 33 (2017) 174–184
As was described in Section 3.2, the results in Tables 1
and 2 are based on the use of a threshold of 80% for
signaling new business cycle turning points. Table 3
assesses the robustness to this threshold by presenting the
average numbers of days required for the LVQ algorithm
to identify NBER peak and trough dates when we vary
this threshold from 50% to 90%. As expected, lowering
the threshold leads to a more timely identification of
the turning point dates. However, this comes at the
cost of some false positives, in the form of non-NBER
recession episodes that are identified by the algorithm. For
example, lowering the threshold to 70% identifies NBER
peak and trough dates about onemonth faster than the 80%
threshold on average, but the algorithm also identifies one
false recession. Interestingly, lowering the threshold below
70% provides small to no gains in timeliness. The number
of false positives remains modest, reaching a high of three
when the threshold is set to 50%.

3.4. Results with additional data series

The analysis of the previous section applied the
LVQ algorithm to four monthly series that have been
highlighted consistently by the NBER in announcements
regarding the dates of US business cycle turning points.
However, it is possible that considering extra monthly
series in addition to those mentioned explicitly by the
NBER may help to provide a more timely identification of
business cycle turning points. We explore this possibility
here by repeating the out-of-sample experiment described
in the previous section, but with additional data added to
the analysis.

There are many additional monthly coincident indi-
cators that we could include, and the recent literature
has largely taken the path of extracting a small number
of factors from a large set of indicators for use in fore-
casting. For example, Stock and Watson (1999) forecast
inflation successfully using a factor constructed from 61
indicators ofmacroeconomic activity, while Ludvigson and
Ng (2009) explained bond risk premia using factors con-
structed from 132 macroeconomic and financial time se-
ries that are thought to comove with the business cycle.
Our approach here is similar, with our dataset being aug-
mented with a factor that is obtained from monthly coin-
cident indicators of macroeconomic activity. We measure
this factor following Fossati (in press), and use the Chicago
Fed National Activity Index (CFNAI). This index, which is
released near the end of each month by the Chicago Fed-
eral Reserve Bank, is the first principal component of 85
series that have been identified as coincident with the
US business cycle. We are able to obtain each release, or
vintage, of the CFNAI stretching back to its inception in
January 2001, which allows us to retain the realism of
our real-time out-of-sample nowcasting experiment, al-
beit over a shorter out-of-sample period than our primary
analysis. An alternative would be to construct a similar
factor directly from the underlying data series, recursively
over a longer out-of-sample period.We do not take this ap-
proach because it is not feasible to obtain the vintages that
would have been available to an analyst who was applying
LVQ in real time for such a large set of data series.
Table 4
US business cycle peaks and troughs identified in real-time: additional
monthly coincident indicators.

NBER peak
date

LVQ peak
date

NBER
identification lag

LVQ
identification lag

3/2001 3/2001 239 251
12/2007 2/2008 335 158

NBER
trough date

LVQ trough
date

NBER
identification lag

LVQ
identification lag

11/2001 1/2002 239 166
6/2009 7/2009 335 199

Notes: The table replicates the analysis in Tables 1–2 when the dataset is
augmented with the Chicago Fed National Activity Index.

Table 4 replicates the analysis in Tables 1–2 over the
out-of-sample period from January 2001 to July 2013, but
with the dataset augmented with the CFNAI.17 We see
some mixed results from including additional monthly
coincident indicators. First, including the CFNAI does not
change the dates of turning points established in real
time materially. For the four turning points in the out-
of-sample period, only one date was altered, and this by
only one month. Second, the timeliness of the algorithm is
improved significantly for one turning point in the sample,
namely the trough of the 2001 recession. The inclusion of
CFNAI allowed this trough to be identified by the algorithm
142 days earlier than with the algorithm applied to data
without CFNAI. Finally, the addition of CFNAI slows the
identification of two other turning points, by 35 days for
the 2001 business cycle peak, and by 42 days for the 2009
business cycle trough. Thus, overall, the addition of CFNAI
provides an improvement in the average speedwithwhich
turning points are identified, although this is not true for
all, or even the majority, of the turning points in the out-
of-sample period.

4. Conclusion

Non-parametric machine learning algorithms are used
commonly inmany disciplines to classify data as belonging
to one of a set of classes. We have proposed a particularly
salient algorithm, known as learning vector quantization,
for the purpose of classifying economic data into expansion
and recession regimes. Of particular interest is the ability of
the algorithm to identify US business cycle turning points
accurately and quickly in real time.

We evaluate the real-time performance of the LVQ
algorithm for identifying business cycle turning points
in the United States over the past 35 years and five
recessions. The LVQ algorithm identified the dates of all
five recessions over this period accurately, with no false
positives, and at an impressive speed. For example, the LVQ
algorithm would have identified the December 2007 peak
in economic activity by early June 2008, several months
ahead of the statistical tracking procedures reviewed by
Hamilton (2011) as being in use at the time. Looking across
all recessions, the algorithm’s speed of identifying peaks
and troughs over our sample period is very competitive

17 Technically, we use the ‘‘CFNAI3’’ series, which is the three-month
moving average of the CFNAI.
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with that of the dynamic factorMarkov-switchingmodel, a
technique that is used commonly for dating business cycles
in real time.
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Appendix A

As was described in Section 2.4, the implementation of
the LVQ algorithm requires both the specification of the
number of codebook vectors and the development of a
strategy for the initialization of these codebook vectors.
In this appendix, we consider the performance of the LVQ
algorithm when we set the number and initial location of
codebook vectors using alternative approaches to that used
in the baseline implementation that generated our primary
results. In particular, we repeat the analysis presented in
Tables 1–2 when using these different implementations of
the LVQ algorithm.

Again, we set the number of codebook vectors for
our baseline version of LVQ, denoted N̄ , by following the
prescriptions of Kohonen (2001) and assigning the same
number of codebook vectors to both the recession and
expansion classes, where this number is equal to the
number of data points in the training sample that fall into
the recession class. We consider two alternative values for
N̄ here. In the first, N̄ = 2, so that each class is described
by only a single codebook vector. The results for this case
are given in Tables A.1–A.2. In the second, we set N̄ equal
to the number of recession months, so that each class is
described by a number of codebook vectors that is equal to
half of the number of recessionmonths. The results for this
case are given in Tables A.3–A.4.

Table A.1
US business cycle peaks identified in real-time: an alternative number of
codebooks.

NBER peak
date

LVQ peak
date

NBER
identification lag

LVQ
identification lag

1/1980 2/1980 123 127
7/1981 9/1981 158 161
7/1990 7/1990 267 129
NA 10/1991 NA NA
3/2001 8/2001 239 251
12/2007 7/2008 335 312

Average: 224 196

Notes: The table replicates the analysis in Table 1, but using an alternative
number of codebook vectors in the LVQ algorithm. The total number of
codebook vectors is set equal to two, so that the expansion and recession
classes each have a single codebook vector.

As the tables demonstrate, lowering the number of
codebook vectors substantially relative to our baseline im-
plementation generally causes the performance of the LVQ
algorithm to deteriorate. When there is only one codebook
vector per class, the algorithm identifies each of the five
NBER peaks more slowly than our baseline implementa-
tion of LVQ, being roughly two months slower at calling
Table A.2
US business cycle troughs identified in real-time: an alternative number
of codebooks.

NBER
trough date

LVQ trough
date

NBER
identification lag

LVQ
identification lag

7/1980 7/1980 341 127
11/1982 11/1982 219 136
3/1991 4/1991 631 124
NA 1/1992 NA NA
11/2001 12/2001 593 126
6/2009 7/2009 446 192

Average: 446 141

Notes: The table replicates the analysis in Table 2, but using an alternative
number of codebook vectors in the LVQ algorithm. The total number of
codebook vectors is set equal to two, so that the expansion and recession
classes each have a single codebook vector.

Table A.3
US business cycle peaks identified in real-time: an alternative number of
codebooks.

NBER peak
date

LVQ peak
date

NBER
identification lag

LVQ
identification lag

1/1980 2/1980 123 127
7/1981 9/1981 158 161
7/1990 7/1990 267 94
NA 10/1991 NA NA
3/2001 3/2001 239 108
12/2007 7/2008 335 312

Average: 224 160

Notes: The table replicates the analysis in Table 1, but using an alternative
number of codebook vectors in the LVQ algorithm. The total number of
codebook vectors is set equal to the number of recession months in the
training sample, with the expansion and recession classes each being
assigned half of these codebook vectors.

Table A.4
US business cycle troughs identified in real-time: an alternative number
of codebooks.

NBER
trough date

LVQ trough
date

NBER
identification lag

LVQ
identification lag

7/1980 8/1980 341 127
11/1982 12/1982 219 164
3/1991 4/1991 631 215
NA 9/1992 NA NA
11/2001 1/2002 593 166
6/2009 7/2009 446 192

Average: 446 173

Notes: The table replicates the analysis in Table 2, but using an alternative
number of codebook vectors in the LVQ algorithm. The total number of
codebook vectors is set equal to the number of recession months in the
training sample, with the expansion and recession classes each being
assigned half of these codebook vectors.

peaks on average. For troughs, though, LVQ with a sin-
gle codebook per class identifies two troughs substantially
more quickly than the baseline LVQ. However, the extent
of this improvement is misleading, as one of these quickly
identified troughs is followed by a false recession episode
in late 1991. The turning point dates established by LVQ
with a single codebook per class are generally less accu-
rate as well. For example, the December 2007 NBER peak is
dated to July 2008. Increasing the number of codebooks so
that N̄ equals the number of recession months (Tables Ta-
ble A.3–A.4) improves the performance of the algorithm
somewhat over the case of N̄ = 2, particularly in the speed
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with which it calls business cycle peaks. However, the al-
gorithm still generates a false positive recession episode,
and is less accurate than the baseline implementation at
dating business cycle turning points.

We next investigate the effects on the algorithm’s
performance of an alternative approach to the initialization
of the location of codebook vectors in the LVQ algorithm.
In our baseline implementation, we initialize the recession
codebooks, of which there are the same number as
recession months, to equal the actual data vectors for the
recession months. We initialize the expansion codebooks,
of which there are fewer than the number of expansion
months, to be drawn randomly from the data vectors for
the expansion months. In contrast, we could use a data-
based approach to identify clusters in the expansion data,
which one might think would be good initial guesses for
the codebook vectors. To implement this idea, we apply
a k-means clustering algorithm to the expansion data
vectors in the training sample in order to identify N̄/2
clusters. These clusters are then used as initial values for
expansion codebooks in the LVQ algorithm.

The results from using LVQ with this alternative
initialization are shown in Tables A.5–A.6. The results
are largely similar to those obtained from our baseline
algorithm. The turning point dates established in real
time are almost identical, never deviating from those

Table A.5
US business cycle peaks identified in real-time: an alternative initializa-
tion of the LVQ algorithm.

NBER peak
date

LVQ peak
date

NBER
identification lag

LVQ
identification lag

1/1980 1/1980 123 127
7/1981 7/1981 158 98
7/1990 7/1990 267 94
3/2001 3/2001 239 251
12/2007 2/2008 335 158

Average: 224 146

Notes: The table replicates the analysis in Table 1, but using a k-means
clustering algorithm to initialize the codebook vectors for the expansion
class in the LVQ algorithm.

Table A.6
US business cycle troughs identified in real-time: an alternative
initialization of the LVQ algorithm.

NBER
trough date

LVQ trough
date

NBER
identification lag

LVQ
identification lag

7/1980 8/1980 341 127
11/1982 12/1982 219 220
3/1991 4/1991 631 443
11/2001 12/2001 593 308
6/2009 7/2009 446 192

Average: 446 258

Notes: The table replicates the analysis in Table 2, but using a k-means
clustering algorithm to initialize the codebook vectors for the expansion
class in the LVQ algorithm.

established by the baseline specification by more than one
month. The speed at which these dates are established is
somewhat worse, 12 days slower on average for peaks and
24 days slower on average for troughs. Overall, the LVQ
algorithm’s performance for dating business cycle peaks
is fairly robust to this alternative initialization procedure,
although the simple initialization procedure used in our
baseline version of LVQ performs best.

Appendix B. Supplementary material

Supplementary material related to this article can be
found online at http://dx.doi.org/10.1016/j.ijforecast.2016.
04.006.
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