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1 Introduction

Regression models with time-varying parameters have become a staple of the applied

econometrician’s toolkit. A particularly prevalent version of these models is the Markov-

switching regression of Goldfeld and Quandt (1973), in which parameters switch between

some finite number of regimes, and this switching is governed by an unobserved Markov

process. Hamilton (1989) makes an important advance by extending the Markov-switching

framework to an autoregressive process, and providing an iterative filter that produces both

the model likelihood function and filtered regime probabilities. Hamilton’s paper initiated

a large number of applications of Markov-switching models, and these models are now a

standard approach to describe the dynamics of many macroeconomic and financial time

series. Hamilton (2008) and Piger (2009) provide surveys of this literature.

Hamilton’s Markov-switching regression model assumes that the Markov state variable

governing the timing of regime switches is strictly exogenous, and thus independent of the

regression disturbance at all leads and lags. Diebold et al. (1994) and Filardo (1994) extend

the Hamilton model to allow the transition probabilities governing the Markov process to be

partly determined by strictly exogenous or predetermined information, which could include

lagged values of the dependent variable. However, this time-varying transition probability

(TVTP) formulation maintains the assumption that the state variable is independent of

the contemporaneous value of the regression disturbance. The large literature applying

Markov-switching models has almost exclusively focused on either the Hamilton (1989) fixed

transition probability model or the TVTP extension, which we will collectively refer to as

“exogenous switching” models.

Despite the popularity of this exogenous switching framework, it is natural in many ap-

plications to think of the state process as contemporaneously correlated with the regression

disturbance, which we refer to as “endogenous switching”. For example, a common ap-

plication of the Markov-switching regression is to models where the dependent variable is

an aggregate measure of some macroeconomic or financial variable, and the state variable
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is meant to capture the business cycle regime (e.g. expansion and recession). It seems

reasonable that shocks to these aggregate quantities, such as real GDP, would contribute si-

multaneously to changes in the business cycle phase. More generally, both the state variable

and the disturbance term to the dependent variable may be influenced simultaneously by a

number of unmodeled elements. For example, in the Hamilton (1989) regime-switching au-

toregressive model of real GDP growth, both the state variable capturing the business cycle

phase and the shock to real GDP are likely influenced by other factors, such as monetary

and fiscal policy.

Motivated by such arguments, Kim et al. (2008) develop an endogenous switching regres-

sion model, in which the state variable and the regression disturbance term are determined

simultaneously. Kang (2014) incorporates the Kim et al. (2008) model of endogenous switch-

ing inside of a more general state-space model. However, a significant drawback of this ex-

isting endogenous switching literature is that it is largely limited to the case of two regimes.1

This limits the potential application of the model considerably, as there is evidence for more

than two regimes in many empirical implementations of the Markov-switching model. For

example, in models of real activity, Boldin (1996) finds evidence for a three regime switching

model of business cycle dynamics for real GDP, while Hamilton (2005) does the same for

the unemployment rate. For asset prices, Garcia and Perron (1996) and Guidolin and Tim-

mermann (2005) provide evidence for a three-regime switching mean and volatility model of

U.S. interest rates and equity returns respectively. In a Markov-switching VAR, Sims and

Zha (2006) find the best fit using nine regimes, primarily capturing changes in conditional

volatility.

In this paper, we develop an N -regime endogenous Markov-switching regression model.

In the two regime case, the model collapses to that in Kim et al. (2008). For more than

1Kim et al. (2008) propose a version of their model for more than two regimes, but it is very restrictive in
terms of the patterns of correlation between the state variable and the regression disturbance term that
can be captured. In particular, their N -state model implies that larger positive values of the regression
disturbance term are monotonically related to larger values of the state variable. Among other things, this
makes results from this model highly dependent on the arbitrary decision of how the states are labeled.

3



two regimes, the model allows for a wide variety of patterns of correlation between the

state variable and regression disturbance term. Despite this flexibility, the model maintains

computational feasibility, and can be estimated via maximum likelihood using extensions to

the filter in Hamilton (1989). The parameterization of the model also allows for a simple test

of the null hypothesis of exogenous switching. Using simulation experiments, we demonstrate

that the maximum likelihood estimator performs well in finite samples and that a likelihood

ratio test of the null hypothesis of exogenous switching has good size and power properties.

We consider two applications of our N -regime endogenous switching model. In the first,

we test for endogenous switching in a three regime switching mean model of U.S. real GDP

growth. In the second, we consider endogenous switching inside of a three-regime version of

the Turner et al. (1989) volatility feedback model of U.S. equity returns. We find statistically

significant evidence of endogenous switching in both of these models, as well as quantitatively

large differences in parameter estimates resulting from allowing for endogenous switching.

2 An N-State Endogenous Markov-Switching Model

Consider the following Gaussian regime-switching model:

yt = g (xt, yt−1, . . . , yt−p, St, St−1, . . . , St−p) + σStεt, (1)

εt ∼ i.i.d.N(0, 1),

where g (·) is a conditional mean function, yt is scalar, xt is a k × 1 vector of observed

exogenous variables, and St ∈ {0, 1, . . . , N − 1} is an integer valued state variable indicating

which of N different regimes is active at time t. Both yt and xt are assumed to be covariance

stationary. Examples of equation (1) include a regime-switching regression model:

yt = x′tβSt + σStεt, (2)
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as well as a regime-switching autoregression:

yt = µSt + φ1 (yt−1 − µSt−1) + φ2

(
yt−2 − µSt−2

)
+ · · ·+ φp

(
yt−p − µSt−p

)
+ σStεt. (3)

For simplicity of exposition, we focus on the regime-switching regression model in equation

(2) throughout this paper. However, the algorithms presented below for estimation and

filtering are easily extended to the more general case of equation (1).

In an N -state Markov-switching model, the discrete regime indicator variable St follows

an N -state Markov-process. Here we will allow the Markov-process to have time-varying

transition probabilities as in Diebold et al. (1994) and Filardo (1994):

pij,t = Pr (St = i|St−1 = j, zt) (4)

In (4), the transition probability is influenced by the strictly exogenous or predetermined

conditioning information in zt, and is thus time varying. We assume that zt is covariance

stationary.

To model the dependence of the transition probability on zt, it will be useful to al-

ternatively describe St as the outcome of the values of N − 1 continuous latent variables,

S∗1,t, S
∗
2,t, . . . , S

∗
N−1,t. Here we use a multinomial probit specification for this purpose (see e.g.

McCulloch et al. (2000)):

St =



0, 0 = max
{

0, S∗1,t, S
∗
2,t, . . . , S

∗
N−1,t

}
1, S∗1,t = max

{
0, S∗1,t, S

∗
2,t, . . . , S

∗
N−1,t

}
...

N − 1, S∗N−1,t = max
{

0, S∗1,t, S
∗
2,t, . . . , S

∗
N−1,t

}


, (5)
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where each of the N − 1 latent variables follow a symmetric process:

S∗i,t = γi,St−1 + z′tδi,St−1 + ηi,t (6)

ηi,t ∼ i.i.d.N(0, 1)

i = 1, · · · , N − 1

This provides enough structure to parameterize the transition probabilities for the Markov-

process:

p0j,t = Pr (η1,t < −c1,j,t, η2,t < −c2,j,t, . . . , ηN−1,t < −cN−1,j,t) , (7)

pij,t = Pr (−ηi,t < ci,j,t, {(ηm,t − ηi,t) < (ci,j,t − cm,j,t) : m = 1, . . . , N − 1,m 6= i}) , (8)

where ci,j,t = γi,j + z′tδi,j, i = 1, . . . , N − 1, j = 1, . . . , N − 1.

To model endogenous switching, we assume that the joint probability density for εt and

ηt = (η1,t, η2,t, . . . ηN−1,t)
′ is independent and identically distributed multivariate Gaussian:

 εt

ηt

 ∼ i.i.d. N (0N ,Σ) , (9)

where:

Σ =



1 ρ1 ρ2 . . . ρN−1

ρ1 1 ρ1ρ2 . . . ρ1ρN−1

ρ2 ρ2ρ1 1 . . . ρ2ρN−1
...

...
...

...
...

ρN−1 ρN−1ρ1 ρN−1ρ2 . . . 1


. (10)

This multivariate Gaussian density implies that the correlation between εt and ηi,t is given

by the parameter ρi. In turn, these ρi parameters control the extent of endogenous switching
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in the model. Indeed, the exogenous switching model is nested through the parameter

restriction ρ1 = ρ2 = · · · = ρN−1 = 0. Further, the ρi parameters have a straightforward

interpretation in terms of endogenous switching: When ρi is positive, larger values of εt are

associated with an increased likelihood of St = i occurring relative to St = 0. When (ρi−ρm)

is positive, larger values of εt are associated with an increased likelihood of St = i occurring

relative to St = m. The converse is also true. Note that nothing in this model takes a stand

on the direction of causality, and the model could be consistent with causality running from

εt to St, from St to εt, or bi-directional causality.

Note that the covariance matrix in (10) implies that conditional on εt, the ηi,t are uncor-

related:

E (ητ,tητ ′,t|εt) = 0, ∀τ 6= τ ′. (11)

This assumption is required to identify the parameters of the model. Specifically, the co-

variance parameters in (11) are not separately identified from the γi,St−j parameters in (6).

Further, the assumption plays the role of a normalization, as these parameters are present

only to parameterize the transition probabilities of the Markov process.

To gain further intuition into how our proposed endogenous Markov-switching model

differs from the exogenous Markov-switching model, it is useful to consider the probability

of transitioning between states, conditional on εt:

p̃ij,t = Pr (St = i|St−1 = j, zt, εt) (12)

For the exogenous switching model, this conditional transition probability is equal to the

unconditional transition probability, so that p̃ij,t = pij,t. For the endogenous switching

model the conditional and unconditional transition probabilities will not be equal, and the

realization of εt can signal markedly different probabilities of transitioning between regimes.

As an example of this, Figure 1 plots unconditional and conditional transition probabili-

ties against alternative realizations of εt ∈ [−3, 3] for a particular parameterization of a three
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state (N = 3) endogenous switching model. In this example, the dependence on zt has been

eliminated, and the correlation parameters have been set to ρ1 = −0.5 and ρ2 = 0.9. The

figure shows that the conditional probability of transitioning regimes can vary in extreme

directions depending on the outcome of εt. For example, focusing on the diagonal entries,

the conditional probability of continuing in the St = 0 regime (p̃00,t) increases gradually

from around 0.3 to above 0.8 as εt moves from a large negative value (-3) toward 0. This

transition probability then falls rapidly to near 0 as εt increases from 0 to around 2. The

other continuation probabilities, p̃11,t and p̃22,t, also display dramatic shifts that cover the

entire probability range as εt is varied. Alternative parameterizations for ρ1 and ρ2 give

alternative patterns of p̃ij,t. An example of this is given in Figure 2, which depicts the

transition probabilities when ρ1 = 0.9 and ρ2 = 0.9. These figures also demonstrate that

the conditional transition probability can differ markedly from the unconditional transition

probability, which is given by the horizontal dashed lines in each figure. As will be shown

in detail in the next section, the ratio of these two probabilities is an important quantity in

distinguishing the likelihood function for the endogenous switching model from that for the

exogenous switching model.

3 Likelihood Calculation, State Filtering and Tests for

Endogenous Switching

In this section we describe how both the likelihood function and filtered and smoothed

probabilities of the states can be calculated for the endogenous switching model.2 We will

also describe how these calculations differ from those for the exogenous switching model.

Finally, we discuss how tests of the null hypothesis of exogenous switching vs. the alternative

hypothesis of endogenous switching can be conducted.

2The model likelihood for Markov-switching models will be invariant to an arbitrary relabeling of regimes. We
assume throughout that the model has been appropriately normalized. Specific strategies for normalization
will be discussed for the empirical analysis presented in Section 5.
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Collect the model parameters into the vector θ, and let Zt = {zt, zt−1, · · · } and Ψt =

{yt, yt−1, · · · } indicate the history of observed zt and yt through date t. As in Filardo (1994),

the conditional likelihood value for yt, f (yt|Ψt−1,Zt, θ), t = 1, · · · , T , can be constructed

recursively using an extension of the iterative formulas in Hamilton (1989) to the case of

time-varying transition probabilities:3

f (yt|Ψt−1,Zt, θ) =
N−1∑
St=0

N−1∑
St−1=0

f (yt|St, St−1,Ψt−1,Zt, θ) pij,t Pr (St−1|Ψt−1,Zt−1, θ) (13)

Pr (St = i|Ψt,Zt, θ) ∝
N−1∑
St−1=0

f (yt|St, St−1,Ψt−1,Zt, θ) pij,t Pr (St−1|Ψt−1,Zt−1, θ) (14)

These equations are then iterated recursively to obtain the log likelihood function L (θ) =
T∑
t=1

log [f (yt|Ψt−1,Zt, θ)] and the filtered state estimates Pr (St = i|Ψt,Zt, θ), t = 1, . . . , T . To

initialize the recursion we require an initial filtered state probability, Pr (S0 = i|Ψ0,Z0, θ),

i = 0, · · · , N − 1, calculation of which can be quite involved. Here we follow the usual

practice, suggested by Hamilton (1989), of approximating this initial probability with an

unconditional probability. In the case of time-varying transition probabilities, we use the

unconditional state probability computed assuming zt is always at its sample mean. Denote

this probability as Pr (St = i|z̄), i = 0, · · · , N − 1, where z̄ is the sample mean of zt. Next,

define p̄ij = Pr (St = i|St−1 = j, z̄), and collect these in a matrix of transition probabilities

as:

P̄ =



p̄00 p̄01 . . . p̄0N−1

p̄10 p̄11 . . . p̄1N−1
...

...
. . .

...

p̄N−1 0 p̄N−1 1 · · · p̄N−1N−1


(15)

3For notational convenience, we suppress the dependence of probability density functions on the regressors,
xt, throughout this section. Equations (13) and (14) make use of the assumption, implicit in equation (2),
that conditional on xt and the state indicator St, the probability density function of yt does not depend on
zt. This is without loss of generality, since xt may include elements of zt.
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Finally, define:

A =

IN − P̄
ι′N


where IN is the N×N identity matrix and ιN is an N×1 vector of ones. The vector holding

Pr (St = i|z̄), i = 0, · · · , N−1 is then computed as the last column of the matrix (A′A)−1A′.

The key element required to compute each step of the the recursion in (13) and (14) is

f (yt|St, St−1,Ψt−1,Zt, θ), and it is here that we see the distinction in the likelihood function

between the exogenous and endogenous switching models. In the exogenous switching model,

the state indicators St = i and St−1 = j simply define the mean and variance of a Gaussian

distribution for yt, such that:

f (yt|St = i, St−1 = j,Ψt−1,Zt, θ) =
1

σi
φ

(
yt − x′tβi

σi

)

where φ() indicates the standard normal probability density function. By contrast, when

there is endogenous switching, the state variables St = i and St−1 = j indicate not just

the parameters of the relevant data generating process, but additionally provide information

about which values of the random disturbance, εt, are most likely. In the case of endogenous

switching:

f (yt|St = i, St−1 = j,Ψt−1,Zt, θ) =
p̃ij,t
pij,t

[
1

σi
φ

(
yt − x′tβi

σi

)]
(16)

This equation, which is derived in Appendix A.1, can be interpreted as follows. The term

in brackets is the regime-dependent conditional density of yt for the exogenous switching

model. This density is then weighted by a ratio of probabilities of transitioning from regime

j to regime i, where the probability in the numerator is conditional on the regime-specific

value of εt and the probability in the denominator is not. The unconditional transition prob-
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ability pij,t can be interpreted as the average value of p̃ij,t with respect to the unconditional

distribution of εt. In other words, pij,t gives the average probability of transitioning from

state j to state i with respect to εt. Thus, equation (16) says that if the value of εt signals an

above average probability of transitioning from state j to state i, then the likelihood value

for yt conditional on St = i and St−1 = j will be higher than would be calculated under the

exogenous switching model. Returning to Figures 1 and 2, the ratio p̃ij,t/pij,t can be far from

unity, meaning the likelihood function for the exogenous switching model may be substan-

tially misspecified in the presence of endogenous switching. In general, estimation assuming

exogenous switching will lead to biased parameter estimates as well as biased filtered and

smoothed state probabilities when endogenous switching is present.

The recursion provided by equations (13) and (14) can be used to construct the value of

the likelihood function for any value of θ. The likelihood function can then be numerically

maximized with respect to θ to obtain the maximum likelihood estimates, θ̂.4 Given these

estimates, the recursion can be run again to provide the filtered state probability evaluated

at the maximum likelihood estimates, Pr
(
St = i|Ψt,Zt, θ̂

)
. In many applications we also

require the so-called “smoothed” state probability Pr (St = i|ΨT ,ZT , θ), which provides in-

ference on St conditional on all available sample information. To compute the smoothed

probabilities, we can apply the recursive filter provided in Kim and Nelson (1999b), which

remains valid for the N-state endogenous Markov-switching model described in Section 2.

Beginning with the final filtered probability, Pr (ST = j|ΨT ,ZT , θ), j = 0, . . . , N − 1, the

following equation can be applied recursively, for t = T − 1, . . . , 1:

Pr (St = i|ΨT ,ZT , θ) =
N−1∑
j=0

N−1∑
k=0

Pr (St−1 = j, St = i, St+1 = k|ΨT ,ZT , θ) (17)

4One practical computational difficulty in constructing the likelihood function is that it requires computing
the unconditional and conditional transition probabilities, p̃ij,t and pij,t, which involves calculation of a
multivariate Gaussian cumulative distribution function (CDF), for which there is no closed form solution.
In our empirical implementation of the endogenous switching model we use Matlab’s “mvncdf” command
to numerically compute the required integrals. Appendix A.2 provides an explicit characterization of these
CDFs for the case of N=3.
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where:

Pr (St−1 = j, St = i, St+1 = k|ΨT ,ZT , θ) (18)

=
Pr(St = i, St+1 = k|ΨT ,ZT , θ)pki,tPr(St = i, St−1 = j|Ψt,Zt, θ)

Pr(St = j, St+1 = k|Ψt,Zt, θ)

For additional details of the derivation of equation (18), see Kim (1994) and Kim and Nelson

(1999b).

To conclude this section, we describe how statistical hypothesis tests of the null hypothesis

of exogenous switching can be conducted. Our N -state endogenous switching model collapses

to a standard exogenous Markov-switching model in the case where:

ρ1 = ρ2 = · · · = ρN−1 = 0, (19)

Thus, the null hypothesis of exogenous switching can be tested by any suitable joint test

of the N − 1 zero restrictions in 19. In the simulation studies presented in Section 4, we

will consider the finite sample performance of both Wald and likelihood ratio tests of these

restrictions.

4 Monte Carlo Evidence

In this section we describe results from a Monte Carlo simulation study. We first eval-

uate the finite sample performance of the maximum likelihood estimator (MLE) applied to

data generated from an endogenous switching model. We also evaluate the size and power

performance of hypothesis tests for endogenous switching. Finally, we investigate the ability

of an information criteria approach to determine the number of regimes in the presence of

endogenous switching.

To focus on the results most germane to the addition of endogenous switching, we consider

a simplified version of the general model presented in Section 2. In particular, we focus on
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the Gaussian Markov-switching mean model:

yt = µSt + σεt (20)

εt ∼ i.i.d.N(0, 1)

where St ∈ {0, 1, 2} is a three-state Markov process that evolves with fixed transition prob-

abilities pij = Pr (St = i|St−1 = j). In all Monte Carlo simulations we set µSt ∈ {−1, 0, 1}

and σ = 1. The Markov process evolves according to the endogenous switching model out-

lined in Section 2 with zt = 0, ∀ t. Across alternative Monte Carlo experiments we vary

the persistence of the transition probabilities for remaining in a regime from a “high persis-

tence” case (p00 = p11 = p22 = 0.9) to a “low persistence” case (p00 = p11 = p22 = 0.7). In

both the high and low persistence cases we spread the residual probability evenly across the

remaining transitions. We vary the size of the correlation parameters from ρ1 = ρ2 = 0.9 to

ρ1 = ρ2 = 0.5. Finally, we consider two sample sizes, T = 300 and T = 500. Performance

is measured using the mean and root mean squared error (RMSE) of the estimates of each

parameter across 1000 Monte Carlo simulations. The RMSE, reported in parentheses, is

computed relative to the true value for each parameter.

Table 1 presents results regarding the performance of the MLE that incorrectly assumes

exogenous switching, and demonstrates that the bias in this incorrectly specified MLE can be

severe. The bias in the µi parameters increases as the state persistence falls, with the amount

of bias reaching as high as 67% of the true parameter value in the case of µ0. Estimation

bias is also visible in the estimates of the conditional variance term, with the bias in some

cases above 15% of the true parameter value. The estimation bias is not a small sample

phenomenon, with similar bias observed for T = 300 as for T = 500. The bias decreases as

the correlation parameters, ρ1 and ρ2, fall from 0.9 to 0.5. However, despite this substantially

lessened importance of endogenous switching, the MLE that ignores endogenous switching

still generates very biased parameter estimates, with bias reaching as high as 43% of the
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true parameter value for µ0.

Table 2 shows results for the same variety of data generating processes, but with the MLE

now applied to the correctly specified model. These results demonstrate that the MLE of the

correctly specified model performs very well, with mean parameter estimates that are close

to the true value, and RMSE statistics that are small. The performance of the correctly

specified estimator is largely unaffected by the extent of state persistence or the value of

the correlation parameters. The sample size also does not have large effects on the mean

estimates although, not surprisingly, the RMSE is higher when the sample size is smaller.

Table 3 shows results of simulations meant to assess the finite sample performance of

both Wald and likelihood ratio (LR) tests of the null hypothesis of exogenous switching,

which is parameterized as a test of the joint restriction ρ1 = ρ2 = 0. We again consider

two sample sizes, as well as a high and low state persistence case. To evaluate the size of

the Wald and LR tests, we first consider the case where the true data generating process

has ρ1 = ρ2 = 0. To evaluate the power of these tests we consider two cases, one in which

the extent of endogenous switching is high (ρ1 = ρ2 = 0.9) and the other where endogenous

switching is more moderate (ρ1 = ρ2 = 0.5). The size results are based on rejection rates

of 5%-level tests using asymptotic critical values. The power results are based on rejection

rates using size-adjusted 5% critical values.

Beginning with the size of the tests, both the Wald and LR test are moderately oversized

when T=300, with rejection rates around 10% for the Wald test and 8% for the LR test. Not

surprisingly, the empirical size is closer to the level implied by the asymptotic critical values

when the sample size is larger. The LR test in particular has empirical size very close to 5%

when T=500. Turning to the power results, the LR test displays consistently high rejection

rates ranging between 69% and 100%. The Wald test is less powerful, with rejection rates

ranging from 42% to 90%.

Our discussion to this point has focused on estimation of models where the number of

Markov-switching states, N , is assumed known. In practice however, the value of N is a
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matter of model selection, and the selection of N in the presence of endogenous switching

has not been previously discussed in the literature. Here we propose the use of the Markov-

switching information criteria (MSC) developed by Smith et al. (2006) for this purpose.

Although the MSC was developed under the assumption of an exogenous switching model,

it is not unreasonable to expect that it would have power to detect the number of states

under endogenous switching. To assess this, we evaluate the performance of the MSC with

simulated datasets.

The MSC is defined as follows:

MSC = −2L(θ̂) +
N∑
i=1

T̂i

(
T̂i + λik

)
δiT̂i − λik − 2

, (21)

where L(θ̂) is the maximized log-likelihood value for the endogenous switching model with N

states, and T̂i =
T∑
t=1

Pr
(
St = i|ΨT ,ZT , θ̂

)
denotes the summation over time of the smoothed

probabilities of each state, i = 1, . . . , N . For λi and δi, we follow the suggestion of Smith et al.

(2006) and set these to N and 1 respectively. Finally, k denotes the number of explanatory

variables. The MSC is calculated for alternative values of N , and the selected value of N is

that which produces the minimum value of the MSC.

Table 4 shows results of application of the MSC to select N in simulated datasets, where

for each dataset the MSC is calculated for values of N from 2 to 4. The true data generating

process is the switching intercept model with N = 3 in (20). We again consider two sample

sizes, a high and low state persistence case, and a high and low case for the size of the

endogenous switching correlation parameters. The entries in Table 4 show the percentage of

simulated datasets for which the MSC was minimized at the indicated value of N .

The results in Table 4 demonstrate that the MSC performs very well for selecting the

number of states in an endogenous switching data generating process. Specifically, the MSC

selects the correct value of N over 97% of the time for all versions of the data generating

process considered. It is notable that the performance of the MSC does not deteriorate as the
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correlation parameters (ρ1 and ρ2) increase, suggesting that endogenous switching does not

adversely affect the MSC over the exogenous switching process the criterion was originally

designed for. The extent of state persistence does affect the performance of the MSC, with

the MSC selecting the correct number of states more often as the state process becomes

more persistent. This is expected as, all else equal, the states become easier to detect as

their persistence increases.

In summary, the Monte Carlo results suggest that ignoring endogenous switching can

lead to substantial bias in the MLE when endogenous switching is in fact present. This bias

persists into large sample sizes, and for both high and moderate values of the parameters

that control the extent of endogenous switching. The MLE that accounts for endogenous

switching performed very well, yielding accurate parameter estimates. Also, the LR test for

exogenous switching was effective, with approximately correct size and good power. Finally,

the MSC performed very well as an approach to select the number of Markov-switching

states in an endogenous switching process.

5 Applications in Macroeconomics and Finance

In this section, we consider two applications of the N-state endogenous Markov-switching

model. In Section 5.1, we consider endogenous switching in a three-state model of U.S. busi-

ness cycle dynamics. In Section 5.2 we extend the two-state endogenous-switching volatility

feedback model of U.S. equity returns in Kim et al. (2008) to allow for three volatility regimes.

5.1 U.S. Business Cycle Fluctuations

One empirical characteristic of the U.S. business cycle highlighted by Burns and Mitchell

(1946) is asymmetry in the behavior of real output across business cycle phases. In his

seminal paper, Hamilton (1989) captures asymmetry in the business cycle using a two-state

Markov-switching autoregressive model of U.S. real GNP growth. His model identifies one
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phase as relatively brief periods of steep declines in output, and the other as relatively

long periods of gradual output increases. Using quarterly data from 1952:Q2 to 1984:Q4,

Hamilton (1989) shows that the estimated shifts between the two phases accord well with

the National Bureau of Economic Research (NBER) chronology of U.S. business cycle peaks

and troughs.

While Hamilton’s original model captures the short and steep nature of recessions relative

to expansions, it does not incorporate an important feature of the business cycle that was

prevalent over the sample period he considered: recessions were typically followed by high-

growth recovery phases that pushed output back toward its pre-recession level. This “bounce

back” effect is evident in the post-recession real GDP growth rates shown in Table 5. In

order to capture this high growth recovery phase, Sichel (1994) and Boldin (1996) extend

Hamilton’s original model to a three state Markov-switching model.

Here we also use a three state Markov-switching model to capture mature expansions,

recessions, and a post-recession expansion phase. In particular, we assume that the U.S. real

GDP growth rate is described by the following three state Markov-switching mean model:

∆yt = µSt + σεt (22)

εt ∼ i.i.d.N(0, 1)

where yt is U.S. log real GDP and St ∈ {0, 1, 2} is a Markov-switching state variable that

evolves with fixed transition probabilities pij. Note that in this model U.S. real GDP growth

follows a white noise process inside of each regime. This intra-regime lack of dynamics is

consistent with the results of Kim et al. (2005) and Camacho and Perez-Quiros (2007), who

find that traditional linear autoregressive dynamics in U.S. real GDP growth are largely

absent once mean growth is allowed to follow a three-regime Markov-switching process.5

5Although the number of Markov-switching states follows from the definition of the business cycle phases
described above, we have also used the MSC to select the number of states in a data-based manner. The
MSC selects the three-state model over a two-state model of the business cycle for U.S real GDP growth.
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We restrict the model in two ways. First, we restrict µ0 > 0, µ1 < 0, and µ2 > 0, which

serves to identify St = 1 as the recession regime, and St = 0 and St = 2 as expansion regimes.

Second, following Boldin (1996), we restrict the matrix of transition probabilities so that the

states occur in the order 0→ 1→ 2:

P̄ =


p00 0 1− p22

1− p00 p11 0

0 1− p11 p22

 ,

In combination with the restrictions on µSt , this form of the transition matrix restricts the

regimes to occur in the order: mature expansion → recession → post-recession expansion.

We will consider two versions of this model, one in which the Markov-switching is assumed

to be exogenous, so that ρ1 = ρ2 = 0, and one that allows for endogenous switching.

We estimate this model using data on quarterly U.S. real GDP growth from 1947:Q1

to 2016:Q2. Over this sample period, there are two prominent types of structural change

in the U.S. business cycle that are empirically relevant. The first is the well-documented

reduction in real GDP growth volatility in the early 1980s known as the “Great Moderation”

(Kim and Nelson (1999a), McConnell and Perez-Quiros (2000)). To capture this reduction in

volatility, we include a one time change in the conditional volatility parameter, σ, in 1984:Q1,

the date identified by Kim and Nelson (1999a) as the beginning of the Great Moderation.

The second, as identified in Kim and Murray (2002) and Kim et al. (2005), is the lack of a

high growth recovery phase following the three most recent NBER recessions. To capture

this change in post-recession growth rates, we include a one-time break in µ2. Finally, to

allow for the possibility that the nature of endogenous switching changed along with the

nature of the post-recession regime, we allow for breaks in ρ1 and ρ2. These breaks in µ2, ρ1

and ρ2 are also dated to 1984:Q1, although results are insensitive to alternative break dates

between 1984:Q1 and the beginning of the 1990-1991 recession. All other model parameters

are assumed to be constant over the entire sample period.
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The second and third columns of Table 6 shows the maximum likelihood estimation

results when we assume exogenous switching. The estimates show a prominent high growth

recovery phase before 1984:Q1 (µ2,1 >> µ0). The estimates also show that this high growth

recovery phase has disappeared in recent recessions, and indeed been replaced with a low-

growth post-recession phase (µ2,2 < µ0). The conditional volatility parameter, σ, falls by

50% after 1984, consistent with the large literature on the Great Moderation.

The maximum likelihood estimates assuming endogenous switching are shown in the

fourth and fifth columns of Table 6. A likelihood ratio test rejects the null hypothesis of

exogenous switching at the 5% level (p-value = 0.045). The estimates of the correlation

parameters prior to 1984 are such that ρ2 < ρ1 < 0. This pattern of correlations means

that larger positive values of εt increase the likelihood of St = 0 (mature expansion) relative

to St = 1 (recession) and St = 2 (post-recession expansion), and increase the likelihood of

St = 1 relative to St = 2. These estimates switch signs after 1984, such that ρ1 ≈ ρ2 > 0. In

this case, larger positive values of εt increase the likelihood of St = 1 and St = 2 relative to

St = 0.

There is also evidence of bias in the parameter estimates of the exogenous switching

model. The estimated mean growth rate in the post-recession expansion phase is substan-

tially different when accounting for endogenous switching. Also, the continuation probabil-

ity for the post-recession phase, p22, is substantially lower when accounting for endogenous

switching, meaning the length of these phases are overstated by the results from exogenous

switching models. Finally, results of the Ljung-Box test, shown in the bottom panel of

the table, show that accounting for endogenous switching eliminates autocorrelation in the

disturbance term that is present in the exogenous switching model.

Figure 3 displays the smoothed state probabilities for both the exogenous and endogenous

switching models, and shows the distortion in estimated state probabilities that can occur

from ignoring endogenous switching. From panel (a), we see that the smoothed probability

that the economy is in a mature expansion (St = 0) is often lower for the exogenous switching
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model than the endogenous switching model, while panel (c) shows that the opposite is

true for the smoothed probability of the post-recession expansion phase (St = 2). Put

differently, the endogenous switching model suggests a quicker transition from the post-

recession expansion phase to the mature expansion phase than does the exogenous switching

model.

5.2 Volatility Regimes in U.S. Equity Returns

An empirical regularity of U.S. equity returns is that low returns are contemporaneously

associated with high volatility. This is a counterintuitive result, as classical portfolio the-

ory implies the equity risk premium should respond positively to the expectation of future

volatility. One explanation for this observation is that while investors do require an increase

in expected return for expected future volatility, they are often surprised by news about

realized volatility. This “volatility feedback” creates a reduction in prices in the period in

which the increase in volatility is realized. The volatility feedback effect has been investi-

gated extensively in the literature by French et al. (1987), Turner et al. (1989), Campbell

and Hentschel (1992), Bekaert and Wu (2000) and Kim et al. (2004).

Turner et al. (1989) (TSN hereafter) model the volatility feedback effect with a two state

Markov-switching model:

rt = θ1E
(
σ2
St
|It−1

)
+ θ2

[
E(σ2

St
|I∗t )− E(σ2

St
|It−1)

]
+ σStut

ut ∼ i.i.d.N(0, 1)

where rt is a measure of excess equity returns, It = {rt, rt−1, · · · }, and I∗t is an information

set that includes It−1 and the information investors observe during period t. St ∈ {0, 1} is a

discrete variable that follows a two state Markov process with fixed transition probabilities

pij. To normalize the model, TSN restrict σ1 > σ0, so that state 1 is the higher volatility

regime.
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One estimation difficulty with the above model is that there exists a discrepancy between

the investors’ and the econometrician’s information set. In particular, while It−1 may be

summarized by returns up to period t− 1, the information set I∗t includes information that

is not summarized in the econometrician’s data set on observed returns. To handle this

estimation difficulty, TSN use actual volatility, σ2
St

to approximate E(σ2
St
|I∗t ). That is, they

estimate:

rt = θ1E
(
σ2
St
|It−1

)
+ θ2

[
σ2
St
− E(σ2

St
|It−1)

]
+ σStεt (23)

εt ∼ i.i.d.N(0, 1)

Kim, Piger, and Startz (2008) (KPS, hereafter) point out that this approximation in-

troduces classical measurement error into the state variable in the estimated equation, thus

rendering it endogenous. KPS propose a two-state endogenous Markov-switching model to

deal with this endogeneity problem. Again, this two-state model of endogenous switching

is identical to the N -state endogenous switching model proposed in Section 2 when N = 2.

However, there is substantial evidence for more than two volatility regimes in U.S. equity

returns (Guidolin and Timmermann (2005)). Here, we extend the TSN and KPS exogenous

and endogenous switching volatility feedback models to allow for three volatility regimes.

Specifically, we extend the volatility feedback model in equation (23) to allow for three

regimes, St ∈ {0, 1, 2}, with fixed transition probabilities pij. For normalization we assume

σ2 > σ1 > σ0, so that state 2 is the highest volatility regime. Note that the extension to

three states is supported by the data. Specifically, the MSC selects N = 3 as the preferred

number of states for both the exogenous and endogenous switching volatility feedback model.

To estimate the three state volatility feedback model, we measure excess equity returns

using monthly returns for a value-weighted portfolio of all NYSE-listed stocks in excess of the

one-month Treasury Bill rate. The sample period extends from January 1952 to December

2015. The second and third columns of Table 7 show the estimation results when we assume
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exogenous switching. The estimates are consistent with a positive relationship between the

risk premium and expected future volatility (θ1 > 0) and a substantial volatility feedback

effect (θ2 << 0). The estimates also suggest a dominant volatility feedback effect, as θ1 is

small in absolute value relative to θ2. The Ljung-Box test, shown in the middle panel of

the table, shows an absence of autocorrelation in the disturbance terms. However, results

of the ARCH-LM test, shown in the bottom panel, shows some correlation remaining in the

squared residuals, suggesting that the three-state volatility feedback model with exogenous

switching is not sufficient to entirely capture the persistence in conditional volatility.

The fourth and fifth columns of Table 7 show the results when we allow for endogenous

switching. First, there is statistically significant evidence in favor of endogenous switching,

with a likelihood ratio test rejecting the null hypothesis of exogenous switching at the 5%

level (p-value = 0.034). The primary difference in the estimated parameters is a much smaller

volatility feedback effect (smaller θ2) in the endogenous switching model than was found in

the exogenous switching model. The estimated correlation parameters have different signs,

with ρ1 < 0 and ρ2 > 0. Thus, large values of εt in equation (23) increase the likelihood of

St = 0 (low volatility regime) relative to St = 1 (medium volatility regime), and increase the

likelihood of St = 2 (highest volatility regime) relative to both St = 0 and St = 1. Unlike the

exogenous switching version, the ARCH-LM test suggests an absence of correlation in the

squared residuals of the three-state endogenous Markov-switching volatility feedback model.

Thus, this model appears sufficient to capture the conditional volatility of excess returns.6

Figure 4 shows the risk premium implied by three different volatility feedback models,

the exogenous switching model with three states (red dashed line), the endogenous switching

model with three states (blue solid line), and the endogenous switching model with two states

(green dotted line). The three state endogenous switching model produces a risk premium

that is more variable than the other models across volatility states. In particular, the risk

6We have also estimated two-state volatility feedback models (not reported). The ARCH-LM test for both
the endogenous and exogenous versions of these models suggests there is remaining serial correlation in the
squared residuals. This is additional evidence for the three-state version of the Markov-switching volatility
feedback model vs. the two state version.
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premium from the three state endogenous switching model rises above the risk premium

from the other models during the highest volatility state, which from Figure 5 is seen to be

highly correlated with NBER recessions. However, during the other volatility states, the risk

premium from the three state endogenous switching model is generally below that from the

other models. On average, our model suggests a 9% risk premium, similar to that estimated

by Kim et al. (2004) using the volatility feedback model assuming exogenous switching over

the period 1952 to 1999. This estimated risk premium is higher than Fama and French

(2002), who estimate an average risk premium of 2.5% using the average dividend yield plus

the average dividend growth rate for the S&P 500 index over the period 1951 to 2000.

Finally, it is interesting to assess whether our introduction of additional, endogenous

switching, states produces improved out-of-sample forecasts. To investigate this, we esti-

mate four versions of the Markov-switching volatility feedback model. The models differ in

the assumption regarding the number of Markov-switching states (two vs. three) and the

assumption regarding whether these states are exogenous vs. endogenous. We then produce

one-month-ahead forecasts of excess equity returns from these models over an out-of-sample

period that extends from January 2000 through the end of our sample period, December

2015. Forecasts are produced based on models estimated over expanding windows.7

Table 8 gives the results of this out-of-sample forecasting experiment, reported as the

root mean squared error (RMSE) for each model over the out-of-sample period. Overall,

these results are consistent with the in-sample evidence favoring the three-state specification

with endogenous switching. Specifically, the results document RMSE reductions achieved

by moving from a two to three state version of the model, regardless of whether the switch-

ing is exogenous or endogenous. Also, the RMSE falls when moving from exogenous to

endogenous switching models, regardless of the number of states. Consistent with the in-

sample evidence, the best forecasting performance comes from the three-state model with

endogenous switching.

7Appendix A.3 details how one-step-ahead forecasts can be constructed for both the exogenous and endoge-
nous Markov-switching volatility feedback model.
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6 Conclusion

We proposed a novel N -state Markov-switching regression model in which the state indi-

cator variable is correlated with the regression disturbance term. The model admits a wide

variety of patterns for this correlation, while maintaining computational feasibility. Maxi-

mum likelihood estimation can be performed using extensions to the filter in Hamilton (1989),

and the parameterization of the model allows for a simple test of the null hypothesis of ex-

ogenous switching. In simulation experiments, the maximum likelihood estimator performed

well, and a likelihood ratio test of exogenous switching had good size and power properties.

We allowed for endogenous switching in two applications: a switching mean model of U.S.

real GDP, and a switching volatility model of U.S. equity returns. We find statistically sig-

nificant evidence of endogenous switching in both of these models, as well as quantitatively

large differences in parameter estimates resulting from allowing for endogenous switching.
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Appendix A.1: Derivation of f (yt|St, St−1,Ψt−1,Zt, θ)

The iterative filter presented in Section 3 requires calculation of the regime-dependent

density f (yt|St, St−1,Ψt−1,Zt, θ), where yt represents the random variable described by

the data generating process described in equation (2) along with the endogenous regime-

switching process described in Section 2. We have again suppressed the conditioning of this

density on the covariates xt. This appendix derives this regime-dependent density.

Let y∗t denote a realization of yt for which we wish to compute f (y∗t |St = i, St−1 = j,Ψt−1,Zt, θ).

Applying Bayes Rule yields:

f (yt|St = i, St−1 = j,Ψt−1,Zt, θ) =
f (yt, St = i|St−1 = j,Ψt−1,Zt, θ)

Pr (St = i|St−1 = j,Ψt−1,Zt, θ)
(A.1)

The denominator of equation (A.1) is the time-varying transition probability, pij,t. Consider

the following CDF of the numerator of (A.1):

Pr (yt < y∗t , St = i|St−1 = j,Ψt−1,Zt)

=

∫ y∗t

−∞
f (yt, St = i|St−1 = j,Ψt−1,Zt) dyt

=

∫ y∗t−x
′
tβi

σi

−∞
f (εt, St = i|St−1 = j,Ψt−1,Zt) dεt

=

∫ y∗t−x
′
tβi

σi

−∞
Pr (St = i|εt, St−1 = j,Ψt−1,Zt) f (εt|St−1 = j,Ψt−1,Zt) dεt

=

∫ y∗t−x
′
tβi

σi

−∞
Pr (St = i|εt, St−1 = j,Ψt−1,Zt) f (εt) dεt

where the validity of moving to the last line in this derivation is ensured by the indepen-

dence of εt over time, the exogeneity of Zt, and the independence of εt and St−1. Finally,
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differentiating this CDF with respect to y∗t yields:

f (y∗t , St = i|St−1 = j,Ψt−1,Zt, θ) (A.2)

= Pr

(
St = i

∣∣∣ (y∗t − x′tβi
σi

)
, St−1 = j,Ψt−1,Zt

)
f

(
y∗t − x′tβi

σi

)

where (y∗t − x′tβi) /σi is a realization of the random variable εt. The first term in (A.2) is

the conditional transition probability, p̃ij,t. Given the marginal Gaussian distribution for εt,

the second term in equation (A.2) is:

f

(
y∗t − x′tβi

σi

)
=

1

σi
φ

(
y∗t − x′tβi

σi

)

Combining the above results, we have:

f (y∗t |St = i, St−1 = j,Ψt−1,Zt, xt) =
p̃ij,t
pij,t

[
1

σi
φ

(
y∗t − x′tβi

σi

)]

which is equation (16) evaluated at y∗t .
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Appendix A.2: Transition Probabilities for a Three-

State Endogenous Markov-Switching Model

The unconditional and conditional transition probabilities defined in Section 2 take the

form of a multivariate normal cumulative distribution function (CDF). In this appendix we

explicitly characterize these CDFs for the case where N=3. First, define c1,j,t = γ1,j + z′tδ1,j

and c2,j,t = γ2,j + z′tδ2,j. For unconditional transition probabilities, we have the following

results:

1. Pr (St = 0|St−1 = j, zt) = p0j,t = Pr(η1,t < −c1,j,t, η2,t < −c2,j,t) is calculated using the

CDF of the following multivariate normal distribution:

η1,t
η2,t

 ∼ N


0

0

 ,
 1 ρ1ρ2

ρ1ρ2 1




2. Pr (St = 1|St−1 = j, zt) = p1j,t = Pr(−η1,t < c1,j,t, (η2,t − η1,t) < (c1,j,t− c2,j,t)) is calcu-

lated using the CDF of the following multivariate normal distribution:

 −η1,t

η2,t − η1,t

 ∼ N


0

0

 ,
 1 1− ρ1ρ2

1− ρ1ρ2 2(1− ρ1ρ2)




3. Finally, Pr (St = 2|St−1 = j, zt) = p2j,t is calculated as:

p2j,t = 1− p0j,t − p1j,t
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For conditional transition probabilities, we have the following results:

1. Pr (St = 0|St−1 = j, zt, εt) = p̃0j,t = Pr (η1,t < −c1,j,t, η2,t < −c2,j,t|εt) can be calculated

as:

p̃0j,t = Pr (η1,t < −c1,j,t|εt) Pr (η2,t < −c2,j,t|εt)

= Φ

(
−c1,j,t − ρ1εt√

1− ρ21

)
Φ

(
−c2,j,t − ρ2εt√

1− ρ22

)

where Φ(·) denotes the CDF of the univariate standard normal density. This is justified

by the conditional independence assumption detailed in equation (11).

2. Pr (St = 1|St−1 = j, zt, εt) = p̃1j,t = Pr (−η1,t < c1,j,t, (η2,t − η1,t) < (c1,j,t − c2,j,t)|εt) is

calculated as the CDF of the following multivariate normal density:

 −η1,t

η2,t − η1,t

∣∣∣∣∣εt
 ∼ N


 −ρ1εt

(ρ2 − ρ1)εt

 ,
1− ρ21 1− ρ21

1− ρ21 2− ρ21 − ρ22




3. Finally, Pr (St = 2|St−1 = j, zt, εt) = p̃2j,t = Pr ((η1,t − η2,t) < (c2,j,t − c1,j,t),−η2,t < c2,j,t|εt)

is calculated as the CDF of the following multivariate normal density:

η1,t − η2,t
−η2,t

∣∣∣∣∣εt
 ∼ N


(ρ1 − ρ2)εt

−ρ2εt

 ,
2− ρ21 − ρ22 1− ρ22

1− ρ22 1− ρ22
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Appendix A.3: Constructing Forecasts for the Markov-

Switching Volatility Feedback Model

In this appendix we describe how to calculate one-step-ahead forecasts for the three-state

volatility feedback model with endogenous Markov-switching described in Section 5.2. For

the three state model, the one-step-ahead forecast can be expressed as follows:

E(rt+1|It) =
2∑
j=0

2∑
i=0

Pr(St+1 = i, St = j|It)
{
θ1E(σ2

St+1
|It) + θ2

[
σ2
i − E(σ2

St+1
|It)
]

+ σiE (εt+1|It, St+1 = i, St = j)}

In the exogenous switching version of the volatility feedback model, E (εt+1|It, St+1 = i, St = j) =

0. In the endogenous switching model, these conditional expectations instead equal:

E (εt+1|It, St+1 = 0, St = j) = E(εt+1|η1,t+1 < −γ1,j, η2,t+1 < −γ2,j)

E (εt+1|It, St+1 = 1, St = j) = E(εt+1|η1,t+1 > −γ1,j, η2,t+1 − η1,t+1 < (γ1,j − γ2,j))

E (εt+1|It, St+1 = 2, St = j) = E(εt+1|η1,t+1 − η2,t+1 < (γ2,j − γ1,j), η2,t+1 > −γ2,j)

To evaluate these conditional expectations in the endogenous switching case we use simu-

lations. In particular, we generate one million realizations of εt+1, η1,t+1, and η2,t+1 from the

multivariate normal distribution in equations (9 - 10), and then calculate the average of εt+1

given the appropriate conditions for each of the conditional expectations. For the two-state

endogenous switching volatility feedback model, the relevant conditional expectations are

evaluated analogously.
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Figure 1
Pr (St = i|St−1 = j) vs. Pr (St = i|St−1 = j, εt)

ρ1 = −0.5, ρ2 = 0.9

Notes: These graphs show the unconditional transition probability, Pr (St = i|St−1 = j)
(horizontal dashed line), and the transition probability conditional on the continuous distur-
bance term in equation (2), Pr (St = i|St−1 = j, εt) (solid line). In all panels, j → i indicates
transitions from state j to state i, and the x-axis measures alternative values of εt.
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Figure 2
Pr (St = i|St−1 = j) vs. Pr (St = i|St−1 = j, εt)

ρ1 = 0.9, ρ2 = 0.9

Notes: These graphs show the unconditional transition probability, Pr (St = i|St−1 = j)
(horizontal dashed line), and the transition probability conditional on the continuous distur-
bance term in equation (2), Pr (St = i|St−1 = j, εt) (solid line). In all panels, j → i indicates
transitions from state j to state i, and the x-axis measures alternative values of εt.
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Figure 3
Smoothed State Probabilities for Three Regime Model of Real GDP Growth

(a) Probability of St = 0 (b) Probability of St = 1

(c) Probability of St = 2

Notes: Smoothed probability of mature expansion phase (St = 0), recession phase (St = 1),
and post-recession recovery phase (St = 2) from 1947:Q2 to 2016:Q2. Dotted lines denote the
regime probability estimated by the exogenous switching model, and solid lines represents
the regime probability estimated by the endogenous switching model. NBER recessions are
shaded.
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Figure 4
Risk Premium from Alternative Volatility Feedback Models

Notes: Risk premium implied by different Markov-switching volatility feedback models.
The red dashed line reports the risk premium produced by the exogenous switching model
with three states, the green dotted line reports the risk premium produced by the endogenous
switching model with two states, and the blue solid line reports the risk premium produced
by the endogenous switching model with three states. NBER recessions are shaded.
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Figure 5
Smoothed State Probabilities from Three Regime

Volatility Feedback Model with Endogenous Switching

(a) Probability of St = 0 (b) Probability of St = 1

(c) Probability of St = 2

Notes: Smoothed probability of low volatility phase (St = 0), medium volatility phase
(St = 1), and high volatility phase (St = 2). NBER recessions are shaded.
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Table 1
Monte Carlo Simulation Results

Performance of Misspecified Maximum Likelihood Estimator

ρ1 = ρ2 = 0.9
µ0 = −1 µ1 = 0 µ2 = 1 σ = 1.0

T = 300
High Persistence -1.28 0.35 1.58 0.96

(0.11) (0.24) (0.58) (0.01)
Low Persistence -1.67 0.52 1.64 0.83

(0.46) (0.34) (0.51) (0.04)

T = 500
High Persistence -1.27 0.33 1.50 0.97

(0.10) (0.20) (0.45) (0.02)
Low Persistence -1.66 0.54 1.62 0.84

(0.44) (0.33) (0.44) (0.03)

ρ1 = ρ2 = 0.5
µ0 = −1 µ1 = 0 µ2 = 1 σ = 1.0

T = 300
High Persistence -1.20 0.16 1.20 0.97

(0.09) (0.13) (0.13) (0.01)
Low Persistence -1.42 0.33 1.38 0.92

(0.25) (0.29) (0.32) (0.03)

T = 500
High Persistence -1.18 0.12 1.15 0.99

(0.05) (0.08) (0.07) (0.01)
Low Persistence -1.43 0.27 1.33 0.94

(0.23) (0.27) (0.26) (0.01)

Notes: This table contains summary results from 1000 Monte Carlo simulations when the
true data generating process is given by yt = µSt + σεt and St evolves according to the
endogenous switching model detailed in Section 2 with N=3 states. “High Persistence”
indicates high state persistence, with transition probabilities p00 = p11 = p22 = 0.9, while
“Low Persistence” indicates transition probabilities p00 = p11 = p22 = 0.7. Each cell contains
the mean of the 1000 maximum likelihood point estimates for the parameter listed in the
column heading, as well as the root mean squared error of the 1000 point estimates from
that parameter’s true value (in parentheses). The maximum likelihood estimator is applied
to the incorrectly specified model that assumes the state process is exogenous.
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Table 2
Monte Carlo Simulation Results

Performance of Correctly Specified Maximum Likelihood Estimator

ρ1 = ρ2 = 0.9
µ0 = −1 µ1 = 0 µ2 = 1 σ = 1.0

T = 300
High Persistence -1.02 -0.01 1.02 0.99

(0.01) (0.04) (0.08) (0.01)
Low Persistence -1.04 -0.02 1.02 0.99

(0.02) (0.09) (0.11) (0.01)

T = 500
High Persistence -1.00 -0.01 1.00 1.00

(0.01) (0.02) (0.02) (0.01)
Low Persistence -1.02 -0.02 1.01 1.00

(0.01) (0.06) (0.05) (0.01)

ρ1 = ρ2 = 0.5
µ0 = −1 µ1 = 0 µ2 = 1 σ = 1.0

T = 300
High Persistence -1.02 0.04 1.05 1.00

(0.03) (0.09) (0.08) (0.01)
Low Persistence -1.05 0.05 1.11 1.01

(0.08) (0.16) (0.32) (0.01)

T = 500
High Persistence -1.02 0.01 1.04 1.00

(0.02) (0.06) (0.06) (0.01)
Low Persistence -1.03 0.03 1.02 1.01

(0.05) (0.14) (0.13) (0.01)

Notes: This table contains summary results from 1000 Monte Carlo simulations when the
true data generating process is given by yt = µSt + σεt and St evolves according to the
endogenous switching model detailed in Section 2 with N=3 states. “High Persistence”
indicates high state persistence, with transition probabilities p00 = p11 = p22 = 0.9, while
“Low Persistence” indicates transition probabilities p00 = p11 = p22 = 0.7. Each cell contains
the mean of the 1000 maximum likelihood point estimates for the parameter listed in the
column heading, as well as the root mean squared error of the 1000 point estimates from
that parameter’s true value (in parentheses). The maximum likelihood estimator is applied
to the correctly specified model that assumes the state process is endogenous.

39



Table 3
Monte Carlo Simulation Results

Size and Size-Adjusted Power of Tests of ρ1 = ρ2 = 0

Size Power Power
ρ1 = ρ2 = 0 ρ1 = ρ2 = 0.5 ρ1 = ρ2 = 0.9

Wald LR Wald LR Wald LR
T = 300
High Persistence 9.5 7.5 47.3 73.3 84.2 98.7
Low Persistence 10.3 8.1 42.2 68.8 81.3 97.3

T = 500
High Persistence 7.2 5.4 68.1 84.5 90.1 100
Low Persistence 7.7 5.7 64.2 80.2 88.7 100

Notes: Each cell of the table contains the percentage of 1000 Monte Carlo simulations for
which the Wald test or likelihood ratio (LR) test rejected the null hypothesis that ρ1 = ρ2 = 0
at the 5% significance level. For columns labeled “Size”, critical values are based on the
asymptotic distribution of the test-statistic. For columns labeled “Power”, size adjusted
critical values are calculated from 1000 simulated test statistics from the corresponding
Monte Carlo experiment in which ρ1 = ρ2 = 0. The data generating process used to
simulate the Monte Carlo samples is given by yt = µSt + σεt, where St evolves according to
the endogenous switching model detailed in Section 2 with N=3 states and ρ1 and ρ2 given
by the column headings.
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Table 4
Monte Carlo Simulation Results

Selection of Number of States using Markov-Switching Information Criteria

ρ1 = ρ2 = 0.9
N = 2 N = 3 N = 4

T = 300
High Persistence 0% 99.4% 0.6%
Low Persistence 0% 97.3% 2.7%

T = 500
High Persistence 0% 99.6% 0.4%
Low Persistence 0% 98.9% 1.1%

ρ1 = ρ2 = 0.5
N = 2 N = 3 N = 4

T = 300
High Persistence 0% 99.1% 0.9%
Low Persistence 0% 98.1% 1.9%

T = 500
High Persistence 0% 99.5% 0.5%
Low Persistence 0% 99.3% 0.7%

Notes: Each cell of the table contains the percentage of 1000 Monte Carlo simulations for
which the Markov-Switching Information Criteria (MSC) of Smith et al. (2006) selected the
indicated number of states (N). The data generating process used to simulate the Monte
Carlo samples is given by yt = µSt + σεt, where St evolves according to the endogenous
switching model detailed in Section 2 with N=3 states and ρ1 and ρ2 given by the column
headings. “High Persistence” indicates high state persistence, with transition probabilities
p00 = p11 = p22 = 0.9, while “Low Persistence” indicates transition probabilities p00 = p11 =
p22 = 0.7.
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Table 5
U.S. Real GDP Growth Rate in Quarters

Following Post-War U.S. Recessions

Quarters After Average Growth Observations
Recession

1 6.45 11
2 6.32 11
3 5.50 11
4 5.79 10
5 4.14 10
6 4.29 10
7 3.66 10
8 3.48 9

Full Sample 3.10 278

Notes: Average growth rates are measured as annualized percentages. The sample period is
1947:Q1 to 2016:Q2. For four quarters and longer, one observation is lost due to the termi-
nation of the expansion following the 1980 recession. For eight quarters, another observation
is lost due to the termination of the expansion following the 1957-1958 recession.
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Table 6
Regime Switching Model for Real GDP Growth Rate

Exogenous Switching Endogenous Switching
µ0 0.87 (0.06) 0.93 (0.11)
µ1 -0.48 (0.18) -0.46 (0.18)
µ2,1 1.62 (0.45) 2.37 (0.42)
µ2,2 0.54 (0.15) 0.34 (0.13)
p00 0.93 (0.03) 0.93 (0.03)
p11 0.71 (0.09) 0.69 (0.10)
p22 0.88 (0.05) 0.72 (0.09)
σ1 0.92 (0.07) 0.93 (0.08)
σ2 0.46 (0.03) 0.50 (0.05)
ρ1,1 -0.30 (0.29)
ρ1,2 0.85 (0.16)
ρ2,1 -0.79 (0.19)
ρ2,2 0.80 (0.19)

Log Likelihood -323.64 -318.78

Q-statistic p-value Q-statistic p-value
Q(k = 1) 4.07 0.04 0.29 0.58
Q(k = 2) 5.48 0.02 1.33 0.52
Q(k = 4) 7.35 0.12 5.35 0.25

Notes: This table reports maximum likelihood estimates of the three state switching mean
model of U.S. real GDP growth given in equation (22). The sample period is 1947:Q1 to
2016:Q2. Standard errors, reported in parentheses, are based on second derivatives of the
log-likelihood function in all cases. Q(k) stands for the Ljung-Box test statistic for serial
correlation in the standardized disturbance term calculated by smoothed probabilities up to
k lags.
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Table 7
Volatility Feedback Model with Three Volatility States

Exogenous Switching Endogenous Switching
θ1 0.50 (0.11) 0.47 (0.11)
θ2 -5.94 (1.67) -3.36 (1.03)
p00 0.96 (0.01) 0.97 (0.01)
p10 0.04 (0.01) 0.03 (0.01)
p01 0.09 (0.02) 0.07 (0.01)
p11 0.85 (0.03) 0.84 (0.03)
p12 0.30 (0.08) 0.31 (0.05)
p22 0.67 (0.11) 0.69 (0.05)
σ0 0.37 (0.01) 0.38 (0.01)
σ1 0.49 (0.03) 0.46 (0.02)
σ2 0.68 (0.07) 0.73 (0.08)
ρ1 -0.63 (0.15)
ρ2 0.42 (0.30)

Log Likelihood -513.90 -510.51

Q-statistic p-value Q-statistic p-value
Q(k = 1) 0.40 0.53 0.14 0.71
Q(k = 2) 0.69 0.71 0.38 0.83
Q(k = 4) 3.15 0.54 0.90 0.92

ARCH-statistic p-value ARCH-statistic p-value
ARCH(k = 1) 4.42 0.04 0.73 0.39
ARCH(k = 2) 6.85 0.03 3.47 0.18
ARCH(k = 4) 11.11 0.03 6.53 0.16

Notes: This table reports maximum likelihood estimates of the volatility feedback model
in equation (23) with three volatility states, estimated assuming both exogenous and en-
dogenous Markov switching. The sample period is 1952:M1 to 2015:M12. Standard errors,
reported in parentheses, are based on second derivatives of the log-likelihood function in all
cases. Q(k) stands for the Ljung-Box test statistic for serial correlation in the standardized
disturbance term calculated by smoothed probabilities up to k lags. ARCH(k) stands for
the ARCH-LM test statistic for serial correlation in the squared standardized disturbance
term calculated by smoothed probabilities up to k lags.
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Table 8
RMSE for Pseudo Out-of-Sample Forecasts of Equity Returns

from Volatility Feedback Model

Exogenous Switching Endogenous Switching
Two States 0.556 0.552

Three States 0.539 0.535

Notes: This table reports the root mean squared errors (RMSE) for pseudo out-of-sample
forecasts of excess equity returns from alternative versions of a Markov-switching volatility
feedback model. Versions of the model are estimated with either two or three volatility
states, and assumptions of either exogenous or endogenous Markov switching. The out-of-
sample period is January 2000 to December 2015. Details of the volatility feedback model
are described in Section 5.2.
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