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1 Bayesian Model Comparison

• Suppose we have two models, denoted M1 and M2. Note that these models need not

be nested. To indicate that we are working with a particular model, we add Mi to

the conditioning set in our equations. We then have the following equation for the

posterior distribution of θi, which are the parameters of Mi:

p (θi|Y,Mi) =
p (Y |θi,Mi) p (θi|Mi)

p (Y |Mi)
,

where p (Y |θi,Mi) is the likelihood function for model Mi, p (θi|Mi) is the prior density

for the parameters of model Mi, and p (Y |Mi) is the marginal likelihood for model Mi.

• Bayesian techniques provide a very clean approach to comparing models. The Bayesian

approach to model comparison proceeds by calculating the posterior probability that

model Mi is the true model. Again, by posterior, this means “after seeing the data.”

We can derive an equation for this posterior model probability by again applying Bayes’

rule:

Pr (Mi|Y ) ∝ p (Y |Mi) Pr (Mi) , (1)

• In this equation:

– Pr (Mi|Y ) is the probability distribution for Mi, conditional on the realized sample

of observations Y . It summarizes our knowledge about whether Mi is the true

model after having seen the sample of observations on y.

– p (Y |Mi) is the marginal likelihood for model Mi.

– Pr (Mi) is the marginal probability distribution for Mi. It summarizes our knowl-

edge about whether Mi is the true model without (or before) having seen the

2



sample of observations on y.

• From this equation we can see that the prior model probability is updated to the poste-

rior model probability by interacting with the marginal likelihood. In other words, the

way the data influences our posterior model probability is through the marginal likeli-

hood. Thus, the marginal likelihood is very important when doing model comparison

using Bayesian methods.

• Equation (1) gives us values that are proportional to the probabilities. To construct

probabilities we would need to normalize these to sum to 1. This can be done by

simply dividing by the normalizing constant:

2∑
i=1

p (Y |Mi) Pr (Mi)

• With Pr (Mi|Y ) in hand, model comparison is then straightforward by comparing

probabilities. For example, one could construct the posterior odds ratio:

p (M1|Y )

p (M2|Y )

which gives us the odds of Model 1 being the true model vs. Model 2. A posterior

odds of 2 says there is a 2-1 chance that Model 1 is the correct model vs. Model 2.

• Using equation (1), we can write the posterior odds ratio as:

p (M1|Y )

p (M2|Y )
=
p (Y |M1)

p (Y |M2)

p (M1)

p (M2)

The first ratio on the right hand side of this equation is the ratio of marginal likelihoods

for Model 1 to Model 2, and is known as the Bayes Factor. The second term is the

ratio of the prior probability that Model 1 is the true model to the prior probability
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that Model 2 is the true model, and thus is the prior odds ratio. The Bayes Factor

is the object which transforms the prior odds into posterior odds. Thus, it transforms

ones prior knowledge (beliefs) into posterior (post-data observation) knowledge. In

many situations the researcher will assign prior odds of 1-1 across the models. In this

case the posterior odds is simply equal to the Bayes Factor.

• Because the marginal likelihood plays a critical role in comparing models in a Bayesian

framework, it is important to understand what the marginal likelihood is measuring.

The marginal likelihood for model Mi is given by:

p (Y |Mi) =

∫
θi

p (Y, θi|Mi) dθi

p (Y |Mi) =

∫
θi

p (Y |θi,Mi) p (θi|Mi) dθi

Again, the marginal likelihood has the interpretation of the average value of the likeli-

hood function for model i across different values for the parameters θi, where averaging

is done with respect to the prior for θi. There are several points that come out of this:

– The way the observed data informs a comparison of models is through the like-

lihood function, specifically the average value of the likelihood function. Models

with high average likelihood functions will do better than those with lower average

likelihood functions.

– The averaging is with respect to the prior distribution for parameters. Parameter

values yielding high likelihood values that were also deemed likely in the prior

will increase the marginal (average) likelihood more than those deemed unlikely

in the prior.

– The previous point makes it clear that a Bayesian “Model” is a combination

of both a likelihood function and a prior for the parameters of that likelihood

function. How likely the model is deemed to be true will depend on both.

4



– There is a built in penalty in Bayesian posterior model probabilities for adding

parameters to a model. Suppose we add a parameter to a model, and specify a

range of values that are plausible through our prior. Also, suppose this parameter

raises the likelihood for one specific value (or a small range of values) of the pa-

rameter. However, it lowers the likelihood for most other values of the parameter

that are deemed plausible by the prior. In this case, the increase in the likelihood

for the small range of parameter values will be offset by the decrease for other pa-

rameter values when computing the average likelihood. Thus, unless the increases

in the likelihood function is large enough, the model with the extra parameter

won’t be given a higher posterior probability than the model that doesn’t include

it. This guards against over-fitting, by preventing a preference for models with

more parameters that simply raise the likelihood by a marginal amount over a

small range of parameter values.

– If one has close to complete ignorance about the possible values a parameter

may take, then it will be unlikely that model that adds this parameter will be

preferred to a simpler model that doesn’t include it. A prior distribution for this

parameter that expresses the near ignorance will be very spread out, and place

close to equal probability on a large range of values for the parameter. As such,

it will be difficult for the marginal likelihood to be high relative to the simpler

model, as it would require the likelihood function to be improved over a very large

range of values for the extra parameter. This is viewed by some as a weakness of

the Bayesian approach (see the discussion of “Jeffrey’s Paradox” below).

– There is a superficial relationship between the classical likelihood ratio test statis-

tic and the Bayes Factor. The likelihood ratio is the ratio of the maximized value

of a likelihood function, while the Bayes Factor is the ratio of averaged likelihood

functions. As noted earlier, the Bayes Factor contains a penalty for adding pa-

rameters. The likelihood ratio does not. The way the likelihood ratio test inserts
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this penalty is by considering the behavior of the likelihood ratio test statistic

across theoretical repeated samples where the null hypothesis that a parameter

doesn’t belong is true.

– The stronger are your prior odds in favor of Model 2 vs. Model 1, the stronger

must be the evidence for Model 1 from the observed data to yield a preference for

Model 1 in the posterior odds.

• How are Bayesian posterior model probabilities used in practice? One approach would

be to choose the model with the highest posterior probability, and then conduct

Bayesian inference conditional on that model. This approach might be fine, provided

that the posterior model probability for one model strongly dominates that for the

other model. However, it might be the case that both models receive non-neglible

posterior probability. In this case, the preferred Bayesian procedure is to conduct

Bayesian Model Averaging. Suppose there is an object of interest that has the

same interpretation across both models, denoted γ. This γ might be one of the pa-

rameters of both models, or a prediction generated by both models. A Bayesian model

averaged inference about γ can then be obtained as:

p (γ|Y ) =
2∑
i=1

p (γ,Mi|Y )

p (γ|Y ) =
2∑
i=1

p (γ|Y,Mi) Pr (Mi|Y )

• It is important to note that the models to be compared with posterior model probabil-

ities need not be nested models. Indeed, the two models can be completely different,

with no common parameters. This is unlike classical hypothesis testing procedures, for

which common asymptotic distribution theory assumes nested models.

• Note that for a Bayesian, “hypothesis testing” is done inside of the framework described

above. For example, one may have a “null hypothesis” that a certain parameter of a
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model is zero. A Bayesian could then define a model that contains this parameter as

Model 1 and a model that sets this parameter to zero as Model 2. It is important to note

here that the definition of Models 1 vs. Model 2 is inconsequential for results, as Models

1 and 2 are treated completely symmetrically in the above discussion. Another way

to say this is that “null” vs. “alternative” hypothesis are treated symmetrically in the

computation of posterior probabilities. How a Bayesian ends up using the probabilities

may be asymmetric, but this is not part of the construction of the probabilities. This is

not true in a classical hypothesis test, where null and alternative hypothesis are treated

asymmetrically by the test procedure. For example, the evidence against the null

hypothesis is captured by the p-value, which is computed assuming the null hypothesis

is true.

• The above discussion focused on comparison of two models. However, the discussion

generalizes to a comparisons of M > 2 models.

2 Example: Bernoulli Trials

• When computing posterior model probabilities, the most difficult task is computing

the marginal likelihood. Here we will given an example of how this is done for the case

of Bernoulli Trials with a Beta prior for the success probability.

• To obtain this, we need to evaluate the following integral:

p (Y ) =

∫ 1

0

p (Y |θ) p (θ) dθ

=

∫ 1

0

(
θs (1− θ)N−s

)( 1

B (α1, α2)
θα1−1(1− θ)α2−1

)
dθ

=
1

B (α1, α2)

∫ 1

0

(
θα1+s−1 (1− θ)α2+N−s−1

)
dθ
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Since the integrand on the right-hand side of the last equation is the kernel for the

posterior, we then have:

f (Y ) =
B (α1, α2)

B (α1, α2)

• Note that for the case of the improper prior where α1 = α2 = 0, then the denominator

of f (Y ) is B (0, 0), which is undefined. This is true generally - the marginal likelihood

is undefined when using an improper prior. Thus, if one wishes to do Bayesian model

comparison, they must use a proper parameter prior.

3 Choosing the Prior Density

• The need to specify a prior pdf for model parameters is one of the most recognizable

characteristics of Bayesian econometrics. Before we talk about how to specify a prior,

and the ramifications of doing so, it is useful to understand exactly what a prior pdf

represents.

What is a Prior Density? Objective vs. Subjective Probability

• Let’s begin with a thought experiment. Suppose that some economic data came from

the following process. First, “nature” chooses parameters (θ) randomly from some

pdf p (θ). In other words, the parameters are random variables that arise from an

objective pdf p (θ). By “objective” here, I mean that θ is a random variable that is

generated from a physically random process, like the outcome from flipping a coin or

rolling a dice. In this case, p (θ) will correctly describe the proportion of outcomes of θ

that would occur if the process that generates θ were repeated a very large number of

times. Note that there is only one objective pdf if it exists. Next, θ is plugged into the

conditional pdf p (y|θ), and a sample of data Y is generated and collected from this

pdf. Finally, we want to use Y to conduct statistical inference about θ.
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• If this was reality, and we knew the pdf p (θ) and the conditional pdf p (y|θ), then Bayes

rule would provide a sensible approach to provide inference about θ given the sample

Y . It would give us a pdf for the unknown parameter θ conditional on seeing the data.

This would tell us everything we would need to do statistical inference, and allow us to

calculate many useful summary statistics. For example, the Bayesian approach would

allow us to compute E (θ|Y ), which would be the optimal (minimum MSE) estimate of

θ. Indeed, it would be hard to argue for any other approach than application of Bayes

Rule under this thought experiment.

• The fact that we all aren’t Bayesians then suggests some level of discomfort with the

thought experiment that I have laid out above as a description of reality. The primary

source of this discomfort comes from the treatment of θ as a random variable with a

known, objective, pdf p (θ).

• The frequentist, or classical, approach assumes that parameters are fixed, unknown,

quantities, and are not random variables. A theory of statistical inference is then

developed consistent with this assumption.

• The Bayesian approach treats parameters as random variables and uses the prior pdf

as p (θ). But how can this be? If a prior pdf can be researcher specific, then how can it

represent the objective pdf, of which there is only one? The answer is that it doesn’t!

Bayesian do not restrict themselves to thinking about probability as an objective con-

cept. Instead, Bayesians allow for the possibility of subjective probability. The prior

pdf is generally an application of subjective probability.

• What is subjective probability? Suppose there is something about which we are uncer-

tain (call this X). If one adheres strictly to the objective notion of probability, then we

can only use probability to describe the possible outcomes of X in those cases where

X is a random variable with a known objective pdf. However, the subjective notion

of probability says that we can use probability statements to describe our uncertainty
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(often called “beliefs”) about the different outcomes X might take even if we don’t

know the objective pdf for X, or indeed, even if X isn’t even a random variable in the

objective sense. Under the subjective interpretation, probability is a tool to

express the degree of one’s beliefs about the possible values of an unknown

quantity. Note that subjective probabilities are personal.

• Here is one example of the distinction between objective and subjective probability,

due to Laplace (early 19th century mathematician). Suppose you are given a coin and

told that the coin is biased, but not by how much or in what direction. What is the

probability of flipping a heads? According to a subjective interpretation of probability,

since you have no reason to favor one side or the other, you might give flipping a heads

a subjective probability of 0.5. However, according to an objective interpretation of

probability, since I know the coin is biased, but I don’t know which way or by how

much, you can’t say what the probability is (other than to say that it is definitely not

0.5!)

• Subjective probability allows us to use probability in a much broader set of situations

than objective probability. I can talk about the probability that there was once life on

Mars, or the probability that the Ducks will win a particular football game played on

a particular day. Interestingly, many, perhaps even most, of the cases where we use

the word probability in daily life is in the context of subjective probability.

• There are two details about subjective probability that we need to nail down. First,

how do we use the real numbers in a pdf to describe the strength of our belief about

something? That is, how do we draw out our personal beliefs (which may be hard to

access) and map them into the numbers in a pdf? Subjective probability theorists use

betting to calibrate subjective probability statements. Specifically, suppose I assign

a 70% probability to the Ducks winning a football game played against UCLA on

November 27, 2015. Under the interpretation of subjective probability, this means
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that I am indifferent between the following two bets. The first bet pays off $100 if the

Ducks win and 0 if they don’t. The second bet is a lottery where drawing a winning

lottery ticket pays off $100 and drawing a losing lottery ticket pays off $0, and there are

70 winning tickets and 30 losing lottery tickets. In other words, subjective probability

statements are not defined by relative frequency statements, as is objective probability,

but instead by indifference over hypothetical bets.

• Second, what can we do with subjective probability? Suppose we have a pdf for an

unknown quantity p (X) that exists under the subjective interpretation. What can we

do with this pdf mathematically? What mathematical laws apply to it? To nail this

down, we need an additional assumption, which is that subjective beliefs described by

probability are coherent. To understand coherent beliefs, we first define a sure-loss

contact, also known as a Dutch Book. A sure-loss contract is a bet that will be

accepted by a better, and which the better is guaranteed to lose money. If beliefs

are such that a sure-loss contract cannot be made against the better, then we say that

the better’s beliefs are coherent. It can be shown that beliefs are coherent if and only

if they are consistent with the basic rules of probability theory that we are used to

seeing with objective probability. Thus, under the assumption that beliefs are coherent,

subjective probability density functions and mass functions can be manipulated with

the same rules of probability that we use with objective probability. For example, the

law of total probability will hold for coherent subjective beliefs.

• What this all means is that the distinction between subjective and objective proba-

bility is primarily philosophical, as the mathematical treatment of the two notions of

probability are the same. That is, once we have a p(X), we can do the same things

with it regardless of whether it represents a subjective or objective probability density

function.

• We now return to the prior density function, which we now understand to give subjec-
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tive probability statements about different possible values of the model parameters θ.

However, we sometimes don’t have explicit priors for econometric model parameters

fleshed out in our personal beliefs. Here we make several general points regarding how

a prior distribution function can be chosen, or elicited:

– Priors might be chosen via careful study of theoretical arguments regarding the

role a parameter plays in a model. For example, if you felt comfortable that X

shouldn’t affect Y negatively in a linear regression, you might specify a prior for

the effect of X on Y that puts less weight on negative values of this parameter.

– Priors might be chosen via careful study of other studies on a similar topic to

your study. As long as these studies use a different, independent, dataset than

the one you are using, then these are valid priors.

– Priors might be chosen via the prior predictive distribution. We may not

have a well developed set of prior beliefs about a particular parameter, but we

might have a well developed set of beliefs about what the data should look like.

Define y∗ as some hypothetical data. The prior predictive distribution is:

p (y∗) =

∫
θ

p (y∗|θ) p (θ) dθ

The prior predictive density gives the marginal pdf for y based on a particular

prior density for θ. The prior can then sometimes be calibrated so that it gives

a pdf for y that reflects ones beliefs. Note that the prior predictive distribution

evaluated at Y is the marginal likelihood for the observed data.

– If one has no idea what values a parameter should take, one might specify a

prior that is very diffuse, in that its mass is spread very thin. Such a prior may

seem attractive in that it “lets the data speak.” However, it can be problematic

when comparing models (see discussion above in the section on Bayesian Model

Comparison).
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– The choice of functional form for the prior distribution function is often driven

by technical considerations, although advances in Bayesian computing techniques

is increasingly making this unnecessary. We will discuss the choice of functional

form in more detail later.

• Regardless of what prior one ends up using, it is important to consider the sensitivity

of results to the specification of the prior. This is important for the conveyance of

results to your audience. A very reasonable question for someone watching a seminar

in which Bayesian results are presented is to say: “Your prior isn’t my prior, so what

should I take from your results?” Thus, it is important to provide results regarding

how results change if the prior is changed. This is in the same spirit of sensitivity

analysis regarding model specification.

• Note that for inference regarding parameters, the choice of prior becomes less important

as the sample size becomes moderate to large. Recall:

p (θ|Y ) ∝ p (Y |θ) p (θ)

so:

ln (p (θ|Y )) = ln (p (Y |θ)) + ln (p (θ)) + c

As more data is added to the vector Y , the RHS of this equation will be dominated by

the likelihood function, p (Y |θ). For many models where the likelihood is informative,

meaning the model is reasonably well identified, this can happen fairly quickly.

• However, for Bayesian model comparison, the choice of prior can be quite important,

even in large samples. Recall, a key component to the construction of Bayesian poste-
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rior model probabilities is the marginal likelihood:

p (Y ) =

∫
θ

p (Y |θ) p (θ) dθ

As the marginal likelihood is the likelihood function averaged with respect to the

prior, it is possible to construct prior distributions that will alter this average value

dramatically, even in large samples. This is particularly true for very diffuse prior

distribution functions, which will cause the likelihood function to be averaged over

extremely low density regions.

4 Example: The Linear Regression Model

• The previous examples “explained” y using a univariate statistical distribution.

• However, econometrics is usually used to explain variation in y with variation in other

variables.

• The most commonly used econometric model to do this is the linear regression model.

Suppose we have N observations of a random variable, denoted Y = (y1, y2, · · ·, yN)′. In

the typical parlance, Y serves as our dependent variable. We also have N observations

on k random variables thought to determine Y . These are the so-called independent

variables. We collect these variables in the N × k matrix:

X = [X1, X2, · · ·, XN ] , (2)

where Xi = (xi,1, xi,2, · · ·, xi,N)′. If the model has an intercept, then one column of X

will consist of an N × 1 column of ones.

• The linear regression model is then given by:
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Y = Xβ + ε,

where β is a k × 1 vector of parameters, and ε = (ε1, ε2, · · ·, εN)′ is a vector of distur-

bance terms. To complete the model we make two assumptions. The first is that the

disturbance terms are i.i.d. Gaussian random variables, with εi ∼ N (0, σ2) . This can

alternatively be written as:

ε ∼ N
(
0N, σ

2IN
)

• Together, β and σ2 then represent the k+1 parameters of the model. It will often

be useful in the Bayesian framework to work with the parameter h = 1/σ2, which is

known as the precision, rather than σ2. The second assumption is that X is a random

variable that is independent of ε with a probability distribution function p (X) that

does not depend on β and h. This implies that X is exogenous.

• The above assumptions are enough to characterize the likelihood function. In partic-

ular, the probability density function for the data, Y and X is given by:

p (Y,X|β, h) = p (Y |X, β, h) p (X) (3)

Since p (X) does not depend on β and h, we can eliminate this term from the right hand

side and focus on the probability distribution for Y , conditional on β, h, and X. Given

the assumptions regarding ε, this is seen to be the multivariate normal distribution:

p (Y |β, h,X) = (2π)−
N
2 h

N
2 exp

[
−h

2
(Y − Xβ)′ (Y − Xβ)

]
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• It will prove useful in later calculations to rewrite this likelihood function in terms of

the ordinary least squares (OLS) estimate for β:

β̂OLS = (X′X)
−1

X′Y,

Start by rewriting (Y − Xβ)′ (Y − Xβ) as:

(
eOLS − X

(
β − β̂OLS

))′ (
eOLS − X

(
β − β̂OLS

))

where eOLS = Y −Xβ̂OLS is the vector of OLS residuals. Next, expand out this matrix

product to yield:

e′OLSeOLS−e′OLSX
(
β − β̂OLS

)
−
(
e′OLSX

(
β − β̂OLS

))′
+
(
β − β̂OLS

)′
X′X

(
β − β̂OLS

)

Recall that the algebra of the OLS estimator enforces e′OLSX = 0. Thus, this expression

reduces to:

e′OLSeOLS +
(
β − β̂OLS

)′
X′X

(
β − β̂OLS

)
We then plug this result into the likelihood function to yield:

p (Y |β, h,X) = (2π)−
N
2 h

N
2 exp

[
−h

2

(
β − β̂OLS

)′
X′X

(
β − β̂OLS

)]
exp

[
−h

2
e′OLSeOLS

]

• To conduct Bayesian inference we require a prior distribution for β and h. Here we will

use the Normal-Gamma distribution as the functional form for our prior distribution.

Thus, we will have:

p (β, h) = p (β|h) p (h)
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where:

β|h ∼ N
(
µ, h−1V

)

h ∼ Gamma (m, v)

where we are using the second formulation of the Gamma density described in the

“Review of Important Probability Density Functions” notes.

• This functional form allows β to vary over the real numbers, while forcing h to be

positive.

• Note that in the above, V is, up to the scalar h−1, a variance-covariance matrix,

and thus its off-diagonal terms are symmetric across the diagonal. Thus, there are

k (k + 1) /2 unique elements in V .

• The full equation for these prior probability distribution functions are:

p (β|h) = (2π)−
k
2 h

k
2 |V |−

1
2 exp

[
−h

2
(β − µ)′ V −1 (β − µ)

]

p (h) =
1(

2m
v

)v/2 1

Γ
(
v
2

)h v−2
2 exp

[
− hv

2m

]

• This prior specification requires us to specify the k × 1 vector of hyper parameters µ,

the k (k + 1) /2 parameters in V , and the two parameters m and v. Note that the

off-diagonal terms of V represent prior covariance terms among the different elements

of β, which is something that we often may not have much prior information about.

Also, we may not have prior information that suggests we should assume different prior
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variances across the elements of β. Thus, it is fairly standard for Bayesian researchers

to set V = τIk, which reduces the specification of V to a single hyper parameter.

• Suppose we choose values for the hyper parameters. Applying, Bayes’ rule and elim-

inating terms that do not depend on β or h we have the following for the posterior

distribution:

p (β, h|Y,X) ∝ h
k
2 exp

[
−h

2

[(
β − β̂OLS

)′
X′X

(
β − β̂OLS

)
+ (β − µ)′ V −1 (β − µ)

]]
× h

N+v−2
2 exp

[
−h

2

(
e′OLSeOLS +

v

m

)]

To continue, we must complete the square for the sum of quadratic forms in the first

exponent. Consider the following result:

(X − g1)′A (X − g1) + (X − g2)′B (X − g2)

= (X − g)′C (X − g) + (g1 − g2)′D (g1 − g2)

where:

C = A+B

D =
(
A−1 +B−1

)−1
g = C−1 (Ag1 +Bg2)

• Applying these results gives us:
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p (β, h|Y,X) ∝ h
k
2 exp

[
−h

2

[
(β − µ)′ V (β − µ) +

(
µ− β̂OLS

)′ (
(X′X)

−1
+ V

)−1 (
µ− β̂OLS

)]]
× h

N+v−2
2 exp

[
−h

2

(
e′OLSeOLS +

v

m

)]
,

where:

V = X′X + V −1

µ = V
−1
(

X′Xβ̂OLS + V −1µ
)

• Rearranging terms we arrive at:

p (β, h|Y,X) ∝ h
k
2 exp

[
−h

2

[
(β − µ)′ V (β − µ)

]]
× h

N+v−2
2 exp

[
−h

2

[
e′OLSeOLS +

v

m
+
(
µ− β̂OLS

)′ (
(X′X)

−1
+ V

)−1 (
µ− β̂OLS

)]]
,

• The previous equation will be recognized as the kernel of the Normal-Gamma distri-

bution NG
(
µ, V

−1
,m, v

)
, where:

v = N + v

m = v

e′OLSeOLS+
v
m
+(µ−β̂OLS)

′
(V+(X′X)−1)

−1
(µ−β̂OLS)

Thus, the Normal-Gamma prior is the conjugate prior for the Gaussian linear regression
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model.

• We can then use known results for the Normal-Gamma density to characterize the

posterior. First, the marginal distribution for β is a multivariate student-t distribution:

β|Y,X ∼ t
(
µ,m−1V

−1
, v
)

Also, the marginal distribution for any single element of β, denoted βj, is:

βj|Y,X ∼ t

(
µj,
[
m−1V

−1
]
jj
, v

)

• Using this we can construct any number of items of interest from the posterior, includ-

ing the following summary statistics:

E (β|Y,X) = µ

V ar (β|Y,X) = v
v−2m

−1V
−1

• By definition of the Normal-Gamma distribution, the marginal posterior for h will

be Gamma (m, v), where we are using the second definition of the Gamma function

defined above. Thus:

E (h|Y,X) = m

V ar (h|Y,X) = 2m2

v
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• These summary statistics are instructive about the role of prior vs. sample information

in Bayesian estimation of the linear regression model. First, the Bayesian point esti-

mate of β given by the posterior mean p (β|Y ) is a matrix weighted average of the OLS

estimate and the prior mean, where the weight given to each depends on the amount

of information in the prior vs. the data. The amount of information in the prior is

given by V −1, while the amount of information in the sample is given by (X′X).

• For example, as V grows larger, so there is less precision in the prior, then V −1 → 0,

and we have:

µ→ β̂OLS

• Also, as the sample size grows, then (X′X) will grow relative to V −1, and we will also

have:

µ→ β̂OLS

• We are often interested in doing model comparisons in the linear regression model,

which will require the marginal likelihood:

p (Y |X) =

∫ ∞
β=−∞

∫ ∞
h=0

p (Y, β, h|X) dh dβ

p (Y |X) =

∫ ∞
β=−∞

∫ ∞
h=0

p (Y |β, h,X) p (β|h) p (h) dh dβ

To make some headway, we will eliminate β from the linear regression model as follows.

Note that the prior for β, conditional on h, can be equivalently expressed using the

following equation:
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β = µ+ η

where η ∼ N (0, h−1V ). Thus, we can combine the prior for β and the linear regression

equation as follows:

Y = X (µ+ η) + ε

Y = Xµ+ Xη + ε

This equation implies the following conditional probability distribution for Y :

Y |h,X ∼ N
(
Xµ, h−1 (XVX′ + IN)

)
So, we can form the marginal likelihood by the following integration:

p (Y |X) =

∫ ∞
h=0

p (Y |h,X) p (h) dh

∝
∫ ∞
h=0

h
N
2 exp

(
−h

2
(Y − Xµ)′ (XVX′ + IN)

−1
(Y − Xµ)

)
h

v−2
2 exp

(
−h

2

v

m

)
dh

Collecting terms yields:

p (Y |X) ∝
∫ ∞
h=0

h
N+v−2

2 exp

(
−h

2

[
(Y − Xµ)′ (XVX′ + IN)

−1
(Y − Xµ) +

v

m

])
dh

Inspection of the integrand above reveals that this is the kernel of a Gamma(a, b)

distribution:
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a =
v +N[

(Y − Xµ)′ (XVX′ + IN)
−1

(Y − Xµ) + v
m

]
b = N + v

Therefore, this integral will be the reciprocal of the normalizing constant of a Gamma(a, b)

density, so:

p (Y |X) ∝
(

2a

b

)b/2
Γ

(
b

2

)
p (Y |X) ∝

(
b

2a

)−b/2

where the validity of going from the first to the second line is because b doesn’t depend

on Y . Plugging in for a and b we then have:

p (Y |X) ∝
[

1

2

[
(Y − Xµ)′ (XVX′ + IN)

−1
(Y − Xµ) +

v

m

]]−N+v
2

This can be alternatively written as:

p (Y |X) ∝
[

1

2m

]−N+v
2 [

(Y − Xµ)′m (XVX′ + IN)
−1

(Y − Xµ) + v
]−N+v

2

Since the first term on the right-hand side is not influenced by Y , we have:

p (Y |X) ∝
[
(Y − Xµ)′m (XVX′ + IN)

−1
(Y − Xµ) + v

]−N+v
2

The right-hand side of this equation will be recognized as the kernel of a Multivariate-t

distribution for Y , with parameters Xµ, m−1 (XVX ′ + IN) and v. Thus, since p (Y )
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is a proper probability distribution function, we have:

Y |X ∼ t
(
Xµ,m−1 (XVX ′ + IN) , v

)
This can be used to conduct Bayesian model comparisons.

5 Exercise: Linear Regression Model

In this exercise we will use the linear regression model with Normal-Gamma priors discussed

above to analyze the dataset called “regression data.txt.” In this dataset, the dependent

variable is called Y and there are k = 3 independent variables, X1, X2, and X3. The sample

size is N = 100. X1 is a N × 1 vector of ones, which will incorporate an intercept into the

regression model. In this case, β = (β1, β2, β3)
′ holds the intercept parameter and the two

slope parameters measuring the effects of X2 and X3.

Using the zipped collection of files titled “Linear Regression.zip”, complete the following

tasks:

1. Assume that your prior distribution for β and h, p (β, h), is Normal-Gamma(µ, V,m, v),

µ = 03, V = 10I3, m = 1 and v = 3. Plot the prior and posterior distribution for β1,

β2 and β3. That is, plot p (βj) and p (βj|Y,X), j = 1, 2, 3.

To help get you started, the MATLAB script “prior lin reg.m” and function “tplot.m”

are set up to load the data file and plot the prior distribution for each of these parame-

ters. You will need to modify this code to plot the posteriors. It would be best to have

three graphs, one that holds the prior and posterior for each of the three parameters.

You can use the “hold on” and “hold off” commands in MATLAB to put multiple plots

in one graph.
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In completing this task, it will be helpful to remember that if a vector random variable

Z and a scalar random variable Q have a joint Normal-Gamma(a, b, c, d) distribution,

then the marginal distribution for Z is:

Z ∼ t
(
a, c−1b, d

)
and the marginal distribution for any element of Z is:

Zj ∼ t
(
aj,
(
c−1b

)
jj
, d
)

where aj is the jth element of a, and (c−1b)jj is the (j, j)th element of (c−1b).

2. Report the posterior mean for β. Compare this to the OLS estimate of β.

3. Suppose you have the null hypothesis: H0 : β3 = 0. A model that enforces this

restriction is:

Y = X̃β̃ + ε,

ε ∼ N
(
0N, σ

2IN
)

where X̃ = (X1, X2), and β̃ = (β1, β2)
′. Suppose that our prior for this model, p (β, h),

is Normal-Gamma(µ, V,m, v), µ = 02, V = 10I2, m = 1 and v = 3. Labeling this

model as “Model 2” and the earlier model as “Model 1”, compute the posterior odds:

Pr(M2|Y )

Pr(M1|Y )
=
p(Y |M2)

p(Y |M1)

Pr(M2)

Pr(M1)
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Be sure to interpret this posterior odds in terms of what it says about the null hypoth-

esis. Also, report what you use as the prior odds.

4. Redo part 3 where you change the prior variance for β3 in Model 1 to be 100 instead

of 10. What happens to the posterior odds? Now try 1000 for the variance. Do you

have an explanation for what is happening?

5. Redo part 3 where you change the prior variance for β1 in both Models 1 and 2 to

be 100 rather than 10. What happens to the posterior odds? Now try 1000 for the

variance. Do you have an explanation for what is happening?
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