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Abstract

Following Hamilton [1989. A new approach to the economic analysis of nonstationary time series and the business cycle.

Econometrica 57, 357–384], estimation of Markov regime-switching regressions typically relies on the assumption that the

latent state variable controlling regime change is exogenous. We relax this assumption and develop a parsimonious model

of endogenous Markov regime-switching. Inference via maximum likelihood estimation is possible with relatively minor

modifications to existing recursive filters. The model nests the exogenous switching model, yielding straightforward tests

for endogeneity. In Monte Carlo experiments, maximum likelihood estimates of the endogenous switching model

parameters were quite accurate, even in the presence of certain model misspecifications. As an application, we extend the

volatility feedback model of equity returns given in Turner et al. [1989. A Markov model of heteroskedasticity, risk, and

learning in the stock market. Journal of Financial Economics 25, 3–22] to allow for endogenous switching.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recent decades have seen extensive interest in time-varying parameter models of macroeconomic and
financial time series. One notable set of models are regime-switching regressions, which date to at least Quandt
(1958). Goldfeld and Quandt (1973) introduced a particularly useful version of these models, referred to in the
following as a Markov-switching model, in which the latent state variable controlling regime shifts follows a
Markov-chain, and is thus serially dependent. In an influential article, Hamilton (1989) extended Markov-
switching models to the case of dependent data, specifically an autoregression.

The vast literature generated by Hamilton (1989) typically assumes that the regime shifts are exogenous with
respect to all realizations of the regression disturbance. In this paper we work with Markov-switching
e front matter r 2007 Elsevier B.V. All rights reserved.
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regressions of the type considered by Hamilton (1989) and various extensions, but relax the exogenous
switching assumption. We develop a Gaussian model of endogenous Markov regime switching based on a
probit specification for the realization of the latent state. The model is quite parsimonious, and admits a test
for endogenous switching as a simple parameter restriction. The model parameters can be estimated via
maximum likelihood with relatively minor modifications to the recursive filter in Hamilton (1989).

Why are we motivated to investigate Markov-switching regressions with endogenous switching? Many of
the model’s applications are in macroeconomics or finance in situations where it is natural to assume the state
is endogenous. As an example, it is often the case that the estimated state variable has a strong business
cycle correlation. This can be seen in recent applications of the regime-switching model to identified monetary
VARs, such as Sims and Zha (2006) and Owyang (2002). It is not hard to imagine that the shocks to
the regression, such as the macroeconomic shocks to the VAR, would be correlated with the business cycle.
As another example, some applications of the model contain parameters that represent the reaction of
agents to realization of the state, as is the case in the model of equity returns given in Turner et al. (1989)
(TSN hereafter). However, it is likely that agents do not observe the state, but instead draw inference based on
some information set, the contents of which are unknown to the econometrician. Use of the actual state to
proxy for this inference leads to a regression with measurement error in the explanatory variables, and thus
endogeneity.

To evaluate the sensitivity of maximum likelihood estimation based on the Gaussian endogenous switching
model-to-model misspecification, we conduct a battery of Monte Carlo experiments in which the true data
generating process is a non-Gaussian endogenous switching model. These experiments suggest that quasi-
maximum likelihood estimation produces accurate estimates of the parameters of the endogenous switching
model, at least for the particular model misspecifications considered. We conduct additional Monte Carlo
experiments to evaluate the finite sample performance of tests for endogenous switching, and find that the
likelihood ratio test has close to correct size for all cases considered.

As an application, we extend the ‘‘volatility feedback’’ model of equity returns given in TSN to allow for
endogenous switching. As discussed above, this model provides a setting in which we might reasonably expect
the Markov-switching state variable to be endogenous. We find marginal statistical evidence of endogenous
switching in the model and that allowing for endogeneity has substantial effects on parameter estimates.

The model of endogenous switching developed in this paper has much in common with an earlier literature
using switching regressions. This literature, such as Maddala and Nelson (1975), was often concerned with
endogenous switching, as the primary applications were in limited dependent variable contexts such as self-
selection and market disequilibrium settings. The model we have presented here can be interpreted as an
extension of the Maddala and Nelson (1975) approach, which was a model of independent switching, to the
Hamilton (1989) regime-switching model, in which the state process is serially dependent.

In the next section we lay out a two-regime Markov-switching regression model with endogenous switching
and discuss maximum likelihood estimation. Section 3 generalizes this model to the N-regime case. Section 4
gives the results of Monte Carlo experiments evaluating the performance of parameter inference and tests for
endogenous switching. Section 5 presents the empirical example to the ‘‘volatility feedback’’ model of TSN.
Section 6 concludes.
2. A two-regime endogenous switching model

2.1. Model specification

Consider the following Gaussian regime-switching model for the sample path of a time series, fytg
T
t¼1:

yt ¼ x0tbSt
þ sSt

�t,

�t�i:i:d: Nð0; 1Þ, ð2:1Þ

where yt is scalar, xt is a (k� 1) vector of observed exogenous or predetermined explanatory variables,
which may include lagged values of yt, and St ¼ i is the state variable. Both yt and xt are assumed to be
covariance-stationary variables. Denote the number of regimes by N, so that i ¼ 1, 2,y,N. We begin with the
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case where N ¼ 2. In addition to aiding intuition, the two-regime case is a popular specification in applied
work.1

The state variable is unobserved and is assumed to evolve according to a first-order Markov chain with
transition probabilities:

PðSt ¼ ijSt�1 ¼ j; ztÞ ¼ PijðztÞ. (2.2)

In (2.2), the transition probabilities are influenced by a (q� 1) vector of covariance-stationary exogenous or
predetermined variables zt, where zt may include elements of xt. The Markov chain is assumed to be
stationary, and to evolve independently of all observations of those elements of xt not included in zt.

2

To model the influence of zt on the [0,1] transition probabilities in (2.2) we use a probit specification for St:

St ¼

1 if ZtoaSt�1
þ z0tbSt�1

2 if ZtXaSt�1
þ z0tbSt�1

( )
,

Zt�i:i:d: Nð0; 1Þ. ð2:3Þ

The transition probabilities are then:

p1jðztÞ ¼ PðZtoaj þ z0tbjÞ ¼ Fðaj þ z0tbjÞ, (2.4)

p2jðztÞ ¼ PðZtXaj þ z0tbjÞ ¼ 1� Fðaj þ z0tbjÞ,

where F is the standard normal cumulative distribution function.3

To model endogenous switching, assume that the joint density function of et and Zt is bivariate normal:

�t

Zt

" #
�Nð0;SÞ; S ¼

1 r

r 1

" #
, (2.5)

where et and Zt�h are uncorrelated 8h 6¼0. Regime-switching models found in time-series applications nearly
always make the assumption that et is independent of St�h, 8h, which corresponds to the restriction that r ¼ 0
in the model presented here.4
2.2. Maximum likelihood estimation

Let Ot ¼ ðx
0
t; x
0
t�1; . . . ;x

0
1; z
0
t; z
0
t�1; . . . ; z

0
1Þ
0 and xt ¼ ðyt; yt�1; . . . ; y1Þ

0 be vectors containing observations
observed through date t, and y ¼ ðb1;s1; a1; b1;b2;s2; a2; b2;rÞ be the vector of model parameters. The
conditional likelihood function for the observed data zt is constructed as LðyÞ ¼

QT
t¼1f ðytjOt; xt�1; yÞ, where:

f ðytjOt; xt�1; yÞ ¼
X

i

X
j

f ðytjSt ¼ i;St�1 ¼ j;Ot; xt�1; yÞ

PrðSt ¼ i;St�1 ¼ jjOt; xt�1; yÞ. ð2:6Þ
1As the regime ordering is arbitrary, we assume that the model in (2.1) is appropriately normalized. See Hamilton et al. (2007) for

detailed discussion of this issue.
2Several special cases of (2.2) are worth mentioning. The unrestricted model is the time-varying transition probability Markov-switching

model of Goldfeld and Quandt (1973), Diebold et al. (1994) and Filardo (1994). When the transition probabilities are not influenced by

St�1, we have the time-varying transition probability independent switching model of Goldfeld and Quandt (1972). When the transition

probabilities are not influenced by zt, we have the fixed transition probability Markov-switching model of Goldfeld and Quandt (1973) and

Hamilton (1989). When the transition probabilities are influenced by neither zt or St�1, we have the fixed transition probability

independent switching model of Quandt (1972).
3Alternatively, a logistic specification could be used to describe the transition probabilities as in Diebold et al. (1994) or Filardo (1994).

The probit specification is used here because it provides a straightforward approach to model endogenous switching.
4In recent work, Chib and Dueker (2004) develop a non-Markov regime switching model in which observable variables are related to the

sign of a Gaussian autoregressive latent state variable, the innovations to which are allowed to be correlated with the model residual

through a bivariate normal specification as in (2.5). The authors develop Bayesian procedures to estimate this model.
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The weighting probability in (2.6) is computed recursively by applying Bayes’ rule:

PrðSt ¼ i;St�1 ¼ jjOt; xt�1; yÞ ¼ PijðztÞPrðSt�1 ¼ jjOt; xt�1; yÞ,

PrðSt ¼ ijOtþ1; xt; yÞ ¼ PrðSt ¼ ijOt; xt; yÞ

¼
1

f ðytjOt; xt�1; yÞ

X
j

f ðytjSt ¼ i;St�1 ¼ j;Ot; xt�1; yÞ

� PrðSt ¼ i;St�1 ¼ jjOt; xt�1; yÞ. ð2:7Þ

To initialize (2.7), the usual practice is to approximate PðS0 ¼ jjO1; x0; yÞ with the unconditional
probability, PðS0 ¼ j; yÞ. Alternatively, this initial probability can be treated as an additional parameter to be
estimated.

To complete the recursion in (2.6)–(2.7), we require the regime-dependent conditional density function,
f ðytjSt ¼ i; St�1 ¼ j;Ot; xt�1; yÞ. For the exogenous switching case (i.e. when r ¼ 0) this density function is
Gaussian:

f ðytjSt ¼ i; St�1 ¼ j;Ot; xt�1; yÞ ¼
1

si

f
yt � x0tbi

si

� �
, (2.8)

where f is the standard normal probability density function. However, for non-zero values of rA(�1,1),
f ðytjSt ¼ i;St�1 ¼ j;Ot; xt�1; yÞ is given by5

f ðytjSt ¼ 1;St�1 ¼ j;Ot; xt�1; yÞ ¼

f
yt � x0tb1

s1

� �
F

aj þ z0tbj � rððyt � x0tb1Þ=s1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
 !

s1p1jðztÞ
, (2.9)

f ðytjSt ¼ 2;St�1 ¼ j;Ot; xt�1; yÞ ¼

f
yt � x0tb2

s2

� �
F
�ðaj þ z0tbjÞ þ rððyt � x0tb2Þ=s2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

 !

s2p2jðztÞ
.

When St is endogenous, maximum likelihood estimation assuming St is exogenous, and thus based on the
distribution in (2.8), is inconsistent in general. To see this, note that:

Eð�tjSt ¼ 1;St�1 ¼ j; yÞ ¼ Eð�tjZtoaj þ z0tbjÞ ¼ �r
fðaj þ z0tbjÞ

Fðaj þ z
0

tbjÞ
,

Eð�tjSt ¼ 2;St�1 ¼ j; yÞ ¼ Eð�tjZtXaj þ z0tbjÞ ¼ r
fðaj þ z0tbjÞ

1� Fðaj þ z0tbjÞ
. ð2:10Þ

Thus, when r6¼0, the regime-dependent conditional mean of et is non-zero, implying that maximum
likelihood estimates based on (2.8) suffer from the ordinary problem of omitted variables. Another, less
obvious, source of inconsistency arises because f ðytjSt ¼ i;St�1 ¼ j;Ot; xt�1; yÞ is non-Gaussian when r6¼0, as
is clear from (2.9). In this case maximum likelihood estimation based on (2.8) is quasi-maximum likelihood
estimation, which, as pointed out in Campbell (2002), is inconsistent for regime-switching models in general.

2.3. Testing for endogeneity

In the model of endogenous switching presented above, the null hypothesis that St is exogenous is
equivalent to the scalar restriction r ¼ 0. Thus, a test for exogeneity can be carried out by any suitable test of
this restriction. One obvious choice is based on the t-statistic:

t ¼
r̂

seðr̂Þ
, (2.11)
5The density (2.9) belongs to the ‘‘skew-normal’’ family of density functions, which are commonly credited to Azzalini (1985). See

Arnold and Beaver (2002) for a survey of this literature.
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where seðr̂Þ is an estimate of the standard error of r̂. Assuming the likelihood function is correctly specified, an
appropriate seðr̂Þ can be constructed from an estimate of the inverse of the information matrix, such as that
based on the negative of the second derivative of the log-likelihood function. Alternatively, one could test for
endogeneity using the likelihood ratio statistic, constructed as

LR ¼ 2ðLðŷÞ � LðŷRÞÞ, (2.12)

where LðŷÞ is the maximized value of the likelihood function, and LðŷRÞ is the maximized value of the
likelihood function under the restriction that r ¼ 0. If the likelihood function is correctly specified, both t and
LR have their usual asymptotic distributions when r ¼ 0. For further details, see Hamilton (1994).

3. An N-regime endogenous switching model

In this section we generalize the two-regime Gaussian endogenous-switching model presented in Section 2 to
N regimes. We begin by modifying the probit specification of the transition probabilities given in (2.3).
Suppose the realization of St is now determined by the outcome of Zt�i:i:d: Nð0; 1Þ as follows:

St ¼

1

2

:

:

N � 1

N

if

if

if

if

�1

a1;j þ z0tb1;j

aN�2;j þ z0tbN�2;j

aN�1;j þ z0tbN�1;j

p
p

p
p

Zt

Zt

Zt

Zt

o
o

o
o

a1;j þ z0tb1;j

a2;j þ z0tb2;j

aN�1;j þ z0tbN�1;j

1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
. (3.1)

The transition probabilities, pij(zt), are then given as follows:

pijðztÞ ¼ Fðci;j;tÞ � Fðci�1;j;tÞ, (3.2)

where c0;j;t ¼ �1, cN;j;t ¼ 1, and ci;j;t ¼ ai;j þ z0tbi;j for 0oioN.
Again, to model endogenous switching, assume that the joint density of et and Zt is bivariate normal as in

(2.5). Let the vector of model parameters be y ¼ ðy01; y
0
2; . . . ; y

0
N ;rÞ

0, where yi ¼ ðbi; si; ai; biÞ
0. Given

f ðytjSt ¼ i;St�1 ¼ j;Ot; xt�1; yÞ, the likelihood function, L(y), can again be constructed using the recursion
in (2.6)–(2.7). It can be shown that6:

f ytjSt ¼ i;St�1 ¼ j;Ot; xt�1; y
� �

¼

f
yt � x0tbi

si

� �
F

ci;j;t � r
yt � x0tbi

si

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
0
BB@

1
CCA� F

ci�1;j;t � r
yt � x0tbi

si

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
0
BB@

1
CCA

0
BB@

1
CCA

sipijðztÞ
. ð3:3Þ

Finally, as with the two-regime endogenous-switching model, a test of the null hypothesis that St is
exogenous is equivalent to a test of the restriction r ¼ 0.

4. Monte Carlo analysis

In this section we provide Monte Carlo evidence regarding the sensitivity of maximum likelihood estimation
based on the joint normality assumption in (2.5) to departures from this Gaussian assumption in the data
generating process. Such a departure renders the estimator based on (2.5) a quasi-maximum likelihood (QML)
estimator, which is inconsistent for Markov-switching models in general (Campbell, 2002). Our Monte Carlo
experiments then provide some limited evidence of how badly the QML estimator performs in practice.7 We
6We provide a derivation of (3.3) in an unpublished appendix, available at: http://www.uoregon.edu/�jpiger/.
7In untabulated results, available from the authors, we have also conducted Monte Carlo experiments in which the data generating

process maintains the joint normality assumption given in (2.5). These results suggest that maximum likelihood estimation of the

http://www.uoregon.edu/~jpiger/
http://www.uoregon.edu/~jpiger/
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also present Monte Carlo evidence regarding the finite sample performance of the t and likelihood ratio tests
for endogenous switching.

Given its prominence in the applied literature, we focus on the two-regime model with fixed, Markov-
switching transition probabilities, so that b1 ¼ b2 ¼ 0. For each Monte Carlo experiment, 1000 simulated
series are generated from the model given in (2.1)–(2.3). We consider two sample sizes for the simulated series,
T ¼ 200 and 500. For each simulation, the vector of exogenous explanatory variables is set to xt ¼ ½ 1 x�t �,
where x�t�i:i:d:Nð0; 2Þ, and the vector of regime-switching parameters is set to b1 ¼ ðb0;1;b1;1Þ

0
¼ ð1:0; 1:0Þ0,

b2 ¼ ðb0;2; b1;2Þ
0
¼ ð�1:0;�1:0Þ0, s1 ¼ 0:33, and s2 ¼ 0:67. We consider three different sets of transition

probabilities corresponding to moderate persistence (p11 ¼ 0:7, p22 ¼ 0:7), high persistence (p11 ¼ 0:9,
p22 ¼ 0:9), and differential persistence (p11 ¼ 0:7, p22 ¼ 0:9). We also consider three different values for r,
corresponding to high correlation (r ¼ 0.9), moderate correlation (r ¼ 0.5), and zero correlation (r ¼ 0),
where the zero correlation case is used to evaluate the size performance of tests for endogenous switching.
Finally, to produce a non-Gaussian joint density for et and Zt, we generate et as a standard normal random
variable, and Zt as a weighted sum of et and a t-distributed random variable with four degrees of freedom. The
weighting is calibrated so that (et,Zt)

0 has covariance matrix:

S ¼
1 rg4
rg4 g24

" #
,

where g24 ¼ 2 is the variance of a t-distributed random variable with four degrees of freedom.
For each simulated time series, two sets of maximum likelihood estimates are computed.8 The first, which

we label the ‘‘exogenous’’ estimator, assumes that r ¼ 0, and is thus based on the recursion in (2.6)–(2.7),
using (2.8) to measure f ðytjSt ¼ i;St�1 ¼ j;Ot; xt�1; yÞ. The second, which we label the ‘‘endogenous’’
estimator, allows for ra0, and is thus based on the recursion in (2.6)–(2.7), using (2.9) to measure
f ðytjSt ¼ i;St�1 ¼ j;Ot; xt�1; yÞ. Finally, we also record the outcome of 5% nominal size t and likelihood ratio
tests of the null hypothesis r ¼ 0.9 For those cases where r ¼ 0 in the data generating process, these
tests document the empirical size of the 5% nominal size tests. For those cases where r6¼0, we use size-
adjusted critical values, taken from the Monte Carlo simulations generated with r ¼ 0, to measure the power
of the tests.

Tables 1 and 2 show the results of the Monte Carlo experiments investigating maximum likelihood
estimation of the endogenous-switching model, with Table 1 holding results for experiments in which r ¼ 0.5
and Table 2 holding results for experiments in which r ¼ 0.9. For the parameters b1, b2, s1, s2, each table
shows the mean of the 1000 maximum likelihood point estimates, as well as the root mean squared error
(RMSE) of the 1000 maximum likelihood point estimates from the true value of the parameter.10 The results
suggest that for the particular data generating process considered, the approximation provided by the
normality assumption in (2.5) is quite good. For both sample sizes and all values of the transition probabilities
and r considered, the mean parameter estimates from the endogenous estimator are very close to their true
values. While this result may not generalize to non-normal distributions more generally, it is suggestive that
the quality of the endogenous estimator is not hyper-sensitive to the joint-normality assumption.

Tables 1 and 2 also demonstrate the estimation bias that occurs when the endogenous state variable is
treated as exogenous in estimation. When the exogenous estimator is used, the mean estimates of b0,1 and b0,2
are far from their true values, with the bias larger for higher values of r. The mean estimates of s1 and s2 are
also biased downward. Note that the mean estimates are nearly identical in the T ¼ 200 and 500 cases,
suggesting the bias is not a small sample phenomenon. Also note that the estimates of b1,1 and b1,2 are close to
(footnote continued)

endogenous switching model performs quite well, producing accurate model parameter estimates for all parameterizations and sample

sizes considered.
8All computations were performed in GAUSS 8.0 using the QNewton numerical optimization package.
9The t-tests were constructed using a standard error estimate based on the second derivative of the log-likelihood function. Results when

the standard error estimate is alternatively based on the outer product of the gradient are very similar, and are available from the authors.
10Model estimation also produces estimates of the transition probabilities, and, in the case of the endogenous estimator, the correlation

parameter r. Although not reported, results for these parameter estimates are qualitatively similar to those for the conditional mean and

variance parameters of the regression model.
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Table 1

Monte Carlo results r ¼ 0.5

b0,1 ¼ 1.0 b0,2 ¼ �1.0 b1,1 ¼ 1.0 b1,2 ¼ �1.0 s1 ¼ 0.33 s2 ¼ 0.67

T ¼ 200

p11 ¼ 0.7, p22 ¼ 0.7

Exog. estimator 0.87 (0.13) �0.73 (0.27) 1.00 (0.02) �1.00 (0.03) 0.30 (0.04) 0.61 (0.08)

Endog. estimator 1.00 (0.07) �1.00 (0.14) 1.00 (0.02) �1.00 (0.03) 0.33 (0.04) 0.67 (0.07)

p11 ¼ 0.7, p22 ¼ 0.9

Exog. estimator 0.85 (0.16) �0.90 (0.11) 1.00 (0.03) �1.00 (0.03) 0.31 (0.04) 0.64 (0.05)

Endog. estimator 1.00 (0.09) �1.00 (0.07) 1.00 (0.03) �1.00 (0.03) 0.33 (0.04) 0.67 (0.05)

p11 ¼ 0.9, p22 ¼ 0.9

Exog. estimator 0.94 (0.07) �0.88 (0.14) 1.00 (0.02) �1.00 (0.04) 0.32 (0.03) 0.65 (0.05)

Endog. estimator 1.00 (0.04) �1.00 (0.09) 1.00 (0.02) �1.00 (0.03) 0.33 (0.03) 0.67 (0.05)

T ¼ 500

p11 ¼ 0.7, p22 ¼ 0.7

Exog. estimator 0.87 (0.13) �0.74 (0.26) 1.00 (0.01) �1.00 (0.02) 0.30 (0.03) 0.61 (0.06)

Endog. estimator 1.00 (0.04) �1.00 (0.08) 1.00 (0.01) �1.00 (0.02) 0.33 (0.02) 0.67 (0.04)

p11 ¼ 0.7, p22 ¼ 0.9

Exog. Estimator 0.85 (0.15) �0.90 (0.11) 1.00 (0.02) �1.00 (0.02) 0.31 (0.03) 0.65 (0.03)

Endog. estimator 1.00 (0.05) �1.00 (0.04) 1.00 (0.01) �1.00 (0.02) 0.33 (0.03) 0.67 (0.03)

p11 ¼ 0.9, p22 ¼ 0.9

Exog. estimator 0.95 (0.06) �0.89 (0.12) 1.00 (0.01) �1.00 (0.02) 0.32 (0.02) 0.66 (0.03)

Endog. estimator 1.00 (0.02) �1.00 (0.05) 1.00 (0.01) �1.00 (0.02) 0.33 (0.02) 0.67 (0.03)

Notes: This table contains summary results from 1000 Monte Carlo simulations when the true data generating process is characterized by

endogenous switching (detailed in Section 4) with r ¼ 0.5. Each cell contains the mean of the 1000 maximum likelihood point estimates for

the parameter listed in the column heading, as well as the root mean squared error of the 1000 point estimates from that parameter’s true

value (in parentheses). Exog. estimator refers to the maximum likelihood estimator assuming the state process is exogenous, so that r ¼ 0.

Endog. estimator refers to the maximum likelihood estimator allowing the state process to be endogenous, so that rA(�1,1).

C.-J. Kim et al. / Journal of Econometrics 143 (2008) 263–273 269
their true values. The accuracy of these parameter estimates can be traced to the model assumption,
maintained in the Monte Carlo samples, that x�t is independent of the endogenous state variable St.

Table 3 reports the size and size-adjusted power of the 5% nominal size t and likelihood ratio tests of the
null hypothesis that r ¼ 0 for the data generating processes considered in Tables 1 and 2. When the null
hypothesis is true, the t-test is somewhat oversized, with rejection rates close to 13% when T ¼ 200. However,
this appears to be a small sample phenomena, as the t-test has roughly correct size when T ¼ 500.11 In
contrast, the likelihood ratio test has roughly correct size for all cases considered. When the alternative
hypothesis is true, the t-test and likelihood ratio test have similar size-adjusted power for most of the
alternatives considered. The one exception is when T ¼ 200 and p11 ¼ p22 ¼ 0.7, in which case the likelihood
ratio test has significantly higher size-adjusted power than the t-test.12

Overall, the Monte Carlo experiments suggest that maximum likelihood estimates using the endogenous
estimator are quite accurate, even in the presence of a specific departure in the data generating process from
the joint normality assumption in (2.5), while the exogenous estimator produces substantially biased
parameter estimates when the true process has endogenous switching. Also, the likelihood ratio test appears to
be a fairly reliable test for endogenous switching. In the next section we turn to an empirical application of the
endogenous-switching model.
11The poor performance of the t-test in small samples is consistent with a literature investigating the finite sample properties of tests for

sample selection bias, which are closely related to the tests for endogenous switching considered here. In particular, Nawata and McAleer

(2001) present Monte Carlo evidence that the t-test for sample selection bias can be significantly oversized in small samples, while the

likelihood ratio test has approximately correct size. They trace the source of the small sample distortions to inaccuracies with standard

asymptotic variance estimators when the estimate of the correlation parameter driving the extent of sample selection bias falls close to a

boundary value. In our case, this corresponds to an estimate of r that is close to the boundary of |r| ¼ 1.
12The size and power performance of 1% and 10% nominal size tests (not reported) was very similar to that for the 5% nominal size

tests. In particular, the t-test is oversized when T ¼ 200, the likelihood ratio test has close to correct size in all cases, and the tests have

similar size-adjusted power for most of the alternatives considered.
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Table 2

Monte Carlo results r ¼ 0.9

b0,1 ¼ 1.0 b0,2 ¼ �1.0 b1,1 ¼ 1.0 b1,2 ¼ �1.0 s1 ¼ 0.33 s2 ¼ 0.67

T ¼ 200

p11 ¼ 0.7, p22 ¼ 0.7

Exog. estimator 0.79 (0.21) �0.58 (0.42) 1.00 (0.01) �1.00 (0.03) 0.25 (0.08) 0.52 (0.16)

Endog. estimator 1.00 (0.04) �0.99 (0.08) 1.00 (0.01) �1.00 (0.02) 0.33 (0.03) 0.67 (0.07)

p11 ¼ 0.7, p22 ¼ 0.9

Exog. estimator 0.75 (0.26) �0.83 (0.18) 1.00 (0.02) �1.00 (0.03) 0.28 (0.06) 0.59 (0.08)

Endog. estimator 1.00 (0.06) �1.00 (0.06) 1.00 (0.02) �1.00 (0.02) 0.33 (0.04) 0.67 (0.05)

p11 ¼ 0.9, p22 ¼ 0.9

Exog. estimator 0.90 (0.10) �0.80 (0.21) 1.00 (0.02) �1.00 (0.03) 0.31 (0.03) 0.63 (0.06)

Endog. estimator 1.00 (0.04) �1.00 (0.07) 1.00 (0.02) �1.00 (0.03) 0.33 (0.02) 0.67 (0.05)

T ¼ 500

p11 ¼ 0.7, p22 ¼ 0.7

Exog. estimator 0.80 (0.20) �0.57 (0.43) 1.00 (0.01) �1.00 (0.02) 0.25 (0.08) 0.52 (0.16)

Endog. estimator 0.99 (0.03) �0.99 (0.05) 1.00 (0.01) �1.00 (0.02) 0.33 (0.02) 0.67 (0.04)

p11 ¼ 0.7, p22 ¼ 0.9

Exog. estimator 0.75 (0.25) �0.83 (0.18) 1.00 (0.01) �1.00 (0.02) 0.29 (0.04) 0.60 (0.08)

Endog. estimator 1.00 (0.04) �1.00 (0.04) 1.00 (0.01) �1.00 (0.01) 0.33 (0.02) 0.67 (0.03)

p11 ¼ 0.9, p22 ¼ 0.9

Exog. estimator 0.90 (0.10) �0.79 (0.21) 1.00 (0.01) �1.00 (0.02) 0.31 (0.03) 0.63 (0.05)

Endog. estimator 1.00 (0.02) �1.00 (0.04) 1.00 (0.01) �1.00 (0.02) 0.33 (0.02) 0.67 (0.03)

Notes: This table contains summary results from 1000 Monte Carlo simulations when the true data generating process is characterized by

endogenous switching (detailed in Section 4) with r ¼ 0.9. Each cell contains the mean of the 1000 maximum likelihood point estimates for

the parameter listed in the column heading, as well as the root mean squared error of the 1000 point estimates from that parameter’s true

value (in parentheses). Exog. estimator refers to the maximum likelihood estimator assuming the state process is exogenous, so that r ¼ 0.

Endog. estimator refers to the maximum likelihood estimator allowing the state process to be endogenous, so that rA(�1,1).

Table 3

Monte Carlo results size and size adjusted power of tests of r ¼ 0

Size Power Power

r ¼ 0 r ¼ 0.5 r ¼ 0.9

t LR t LR t LR

T ¼ 200

p11 ¼ 0.7, p22 ¼ 0.7 12.7 6.7 48.0 57.2 99.9 100

p11 ¼ 0.7, p22 ¼ 0.9 7.9 5.7 72.1 72.5 100 99.9

p11 ¼ 0.9, p22 ¼ 0.9 7.7 6.3 82.0 83.5 100 100

T ¼ 500

p11 ¼ 0.7, p22 ¼ 0.7 7.0 5.7 94.6 95.6 100 100

p11 ¼ 0.7, p22 ¼ 0.9 5.7 5.0 97.3 97.6 100 100

p11 ¼ 0.9, p22 ¼ 0.9 6.2 5.6 99.8 99.8 100 100

Notes: Each cell of the table contains the percentage of 1000 Monte Carlo simulations for which the t-test or likelihood ratio (LR) test

described in Section 2.3 rejected the null hypothesis that r ¼ 0 at the 5% significance level. For columns labeled ‘‘Size’’, critical values are

based on the asymptotic distribution of the test-statistic. For columns labeled ‘‘Power’’, size adjusted critical values are calculated from the

1000 simulated test statistics from the corresponding Monte Carlo experiment in which r ¼ 0. The data generating process used to

simulate the Monte Carlo samples is detailed in Section 4.
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5. Application: measurement error and estimation of the volatility feedback effect

A stylized fact of US equity return data is that the volatility of realized returns is time-varying and
predictable. Given this, classic portfolio theory would imply that the equity risk premium should also be
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time-varying and respond positively to the expectation of future volatility. However, the data suggest that
realized returns and realized volatility, as measured by squared returns, are negatively correlated.13

One explanation for the observed data is that while investors do require an increase in expected return in
exchange for expected future volatility, they are often surprised by news about realized volatility. This
‘‘volatility feedback effect’’ creates a reduction in prices in the period in which the increase in volatility is
realized. If the volatility feedback effect is strong enough, it may create a negative contemporaneous
correlation between realized returns and volatility in the data. The volatility feedback effect has been
investigated extensively in the literature, see for example French et al. (1987), TSN, Campbell and Hentschel
(1992), Bekaert and Wu (2000) and Kim et al. (2004).

TSN model the volatility feedback effect with a Markov-switching model:

rt ¼ y1Eðs2St
jct�1Þ þ y2ðEðs2St

jc�t Þ � Eðs2St
jct�1ÞÞ þ sSt

�t,

�t�i:i:d: Nð0; 1Þ, ð5:1Þ

where St is a discrete Markov-switching variable taking on values 1 or 2, with transition probabilities pij

parameterized as in Eq. (2.4). For normalization we assume s224s21, so that St ¼ 2 is the high volatility state.
The model in (5.1) is motivated as follows. At the beginning of period t, the risk premium, y1Eðs2St

jct�1Þ, is
determined based on the expectation of period t volatility formed with information available at the end of
period t�1. During period t additional information regarding volatility is observed. By the end of period t, this
information is collected in the information set c�t . When Eðs2St

jc�t ÞaEðs2St
jct�1Þ, information about volatility

revealed during the period has surprised agents. If y2o0, surprises that reveal greater probability of the high-
variance state are viewed negatively by investors, and thus reduce the contemporaneous return.

One estimation difficulty with the model in (5.1) is that there exists a discrepancy between the investors’ and
the econometrician’s data set. In particular, while ct�1 may be summarized by all data up to t�1, that is
ct ¼ frt�1; rt�2; . . .g, the information set c�t includes information that is not summarized in the researcher’s
data set on observed returns. This is because, while the researcher’s data set is collected discretely at the
beginning of each period, the market participants continuously observe trades that occur during the period.

To handle this estimation difficulty, TSN use the actual volatility, s2St
, as a proxy for Eðs2St

jc�t Þ. That is, they
estimate:

rt ¼ y1Eðs2St
jct�1Þ þ y2ðs2St

� Eðs2St
jct�1ÞÞ þ sSt

ut

ut�Nð0; 1Þ. ð5:2Þ

In essence, this approximation replaces the estimated probability of the state, PðSt ¼ ijc�t Þ, with one if St ¼ i

and zero otherwise. Assuming these differ, this introduces classical measurement error into the state variable
in the estimated equation, thus rendering it endogenous.

The existing literature estimates (5.2) assuming the state variable is exogenous. However, the techniques
developed in Section 2 can be used to estimate the volatility feedback model allowing for endogeneity, as well
as to test for endogeneity. Here we estimate (5.2) using monthly returns for a value-weighted portfolio of all
NYSE-listed stocks in excess of the one-month Treasury Bill rate over the sample period January 1952 to
December 1999, the same data as used in Kim et al. (2004). Table 4 summarizes the results.

The first panel of Table 4 shows estimates when endogeneity is ignored. These estimates, which are similar
to those in TSN, are consistent with both a positive relationship between the risk premium and expected future
volatility (y140) and a substantial volatility feedback effect (y250). The estimates also suggest a dominant
volatility feedback effect, that is y1 is very small relative to y2. The second panel shows the estimates when
endogeneity is allowed, so that the correlation parameter r is estimated. The estimate of r is substantial,
equaling �0.40. The likelihood ratio test, which recorded reliable finite sample size performance in the Monte
Carlo experiments discussed in Section 4, provides marginal evidence against the null hypothesis that r ¼ 0
(p-value ¼ 0.081).14 The primary difference in the parameter estimates is for the volatility feedback coefficient
13For a recent discussion of this result, see Brandt and Kang (2004).
14It is worth emphasizing that the validity of the likelihood ratio test for exogenous switching relies on the correct specification of the

model likelihood function. Evidence in favor of endogenous switching should therefore be interpreted conditional on this maintained

hypothesis.
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Table 4

Maximum likelihood estimates of the Turner et al. (1989) volatility-feedback model

Parameter Ignoring endogeneity Accounting for endogeneity

y1 0.31 (0.10) 0.36 (0.10)

y2 �1.55 (0.45) �1.07 (0.45)

s1 0.40 (0.02) 0.40 (0.02)

s2 0.75 (0.07) 0.74 (0.07)

a1 2.05 (0.20) 2.05 (0.17)

a2 �1.09 (0.21) �1.16 (0.22)

r – �0.40 (0.18)

Log likelihood �372.41 �370.89

Notes: This table reports maximum likelihood estimates of the ‘‘volatility feedback’’ model of excess equity returns given in Turner et al.

(1989) and detailed in Eq. (5.2). Excess returns are measured using monthly returns in excess of the one-month Treasury Bill rate generated

from a value-weighted portfolio of all NYSE-listed stocks. The sample period is January 1952 through December 1999. The column

labeled ‘‘Ignoring Endogeneity’’ holds estimates in which the Markov-switching state variable is assumed exogenous of the regression

error term. The column labeled ‘‘Accounting for Endogeneity’’ holds estimates in which the Markov-switching state variable is allowed to

be endogenous using the approach detailed in Section 2. Standard errors, reported in parentheses, are based on second derivatives of the

log-likelihood function in all cases.
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y2, which is estimated to be about one-third smaller when endogeneity is allowed than when it is ignored.
Thus, while there is still evidence of a strong volatility feedback effect, it is substantially smaller than that
implied by the model with no allowance for endogeneity.

6. Conclusion

We have developed a model of Markov-switching in which the latent state variable controlling the regime
shifts is endogenously determined. The model is quite parsimonious, and admits a test for endogenous
switching as a simple parameter restriction. The model parameters can be estimated via maximum likelihood
with relatively minor modifications to the recursive filter in Hamilton (1989). In Monte Carlo experiments,
maximum likelihood estimation of the endogenous-switching model and the likelihood ratio test for
endogeneity performed quite well, even in the presence of certain model misspecifications. We apply the model
to test for endogenous switching in the volatility feedback model of equity returns given in Turner et al. (1989).
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