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Derivation of equations (2.9) and (3.3):
We proceed by generalizing the derivation of the univariate skew-normal density
function given in Arnold and Beaver (2002). The random variables described in equation (2.5)

can be written as:
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where @, ~1.1.d.N(0,), and A :{ 1 2} is the Cholesky decomposition of X, so that
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AA =3 . From (A.1):
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We can then write, suppressing Q,,<, ;, and @ from the conditioning set for

convenience:
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where ¢, ,;, and c; ;, are defined in Section 3. Consider the cumulative probability distribution
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The denominator of (A.4) is:
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The numerator of (A.4) is:
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Combining (A.5)-(A.6) and differentiating with respect to g yields:
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which is the density function in equation (3.3). When N =2 we have:
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which, upon renaming a, ; =a; and b, ; =b,, is the density function in equation (2.9).
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