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1 Introduction

Following Jordá (2005), local projections (LPs) have become a popular approach to es-

timate impulse response functions. In the empirical macroeconomics literature specifically,

LPs are now widely viewed as a viable alternative to the usual impulse response functions

estimated via vector autoregressive (VAR) models. LPs offer some well publicized potential

advantages over VAR models. First, they are simple to estimate and draw inference on,

since LPs can be implemented via univariate linear regressions. Second, since LPs place less

structure on the assumed data generating process, they are in principle more robust to mis-

specification than VAR models. Third, LPs can more easily accommodate state-dependent

and non-linear specifications, making them especially popular in these applications.1 As lo-

cal projections have increased in popularity, there has been a growing theoretical literature

studying the asymptotic properties of LPs and their relation to VAR models.2

It is common to find differences in the literature in the way the response variable is

specified in LP regressions, with some studies specifying the LP regression in (log) levels,

and others using a cumulated differences specification. In the literature constructing impulse

response functions from VARs, the levels specification has increasingly been considered the

safer route to estimate impulse response functions when the true integration properties of the

data is unknown (Ramey (2016)). The argument typically proceeds as follows: Estimation

in differences can provide a reduction in bias and improved efficiency if the system contains

unit roots. However, if the process is instead stationary, differencing will introduce non-

invertibilities and may hide long-run relationships that create issues for recovering structural

shocks of interest. At the same time, estimation in levels retains long-run relationships and

does not introduce non-invertible disturbances, while techniques have been developed for

near-unit root or unit-root processes to provide appropriate inference (Gospodinov et al.

1See, e.g., Ramey and Zubairy (2018), Auerbach and Gorodnichenko (2013), and Tenreyro and Thwaites
(2016).

2Examples include Olea and Plagbørg-Moller (2021), Plagbørg-Moller and Wolf (2021), Gonçalves et al.
(2023) and Xu (2023)
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(2013)). Further, in the LP literature, recent results from Olea and Plagbørg-Moller (2021)

demonstrate that standard estimators applied to lag-augmented LPs, such as OLS with HAC

standard errors, have asymptotic normal distributions that are invariant to the underlying

persistence properties of the data, including the unit root case. This result seems to provide

a justification for use of the levels specification in LPs.

At the same time, there is a growing literature that shows standard OLS estimates of

impulse response functions via LPs are biased and produce incorrect confidence intervals in

finite samples, particularly in the relatively small sample sizes used in the empirical macroe-

conomics literature. Using simulations, Kilian and Kim (2011) find asymptotic confidence

intervals from LPs are less accurate than bias-adjusted VAR bootstrap confidence intervals.

Herbst and Johannsen (2022) document that LPs are in practice often used with very small

samples in the time dimension, and that point estimates of impulse response functions from

LPs are severely biased on these sample sizes. This is especially true when the process un-

der consideration is persistent, which is the case with most macroeconomic series of interest.

Building on these results, a small number of papers have presented attempts to reduce finite-

sample bias and improve the accuracy of confidence intervals in LP regressions. Herbst and

Johannsen (2022) use an approximate bias function to characterize and partially account for

the bias in the LP regression. Olea and Plagbørg-Moller (2021) consider lag-augmented LPs,

which use lags of the regressors as controls. Using simulations, they find that bootstrapped

lag-augmented LPs generate improved confidence interval accuracy in finite samples.

These simulation studies finding finite sample bias in LP regressions have focused on LPs

specified in levels, and have not considered the performance of LPs specified in cumulated

differences. It is unclear whether the lessons from the VAR literature regarding the relative

merits of estimating in levels vs. differences apply to the LP setting, especially in the com-

mon case where local projections are estimated with an externally identified shock of interest

(Stock and Watson (2018)). Also, while the results of Olea and Plagbørg-Moller (2021) pro-

vide a compelling asymptotic justification for the levels specification, the demonstrated poor
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performance of the levels LP specification in empirically relevant sample sizes leaves open

the possibility that differenced specifications may provide improvements. To our knowledge,

the finite sample performance of LPs estimated in levels vs. differences has not been studied

previously.

We fill this gap by conducting a simulation study to evaluate the finite sample perfor-

mance of LPs specified in levels vs. differences. Consistent with Herbst and Johannsen

(2022), we focus on the empirically relevant case where we have an externally identified,

observed, shock available for which we wish to estimate the impulse response function via

LPs. We begin with the example of an AR(1) with i.i.d. disturbances, and demonstrate

analytically that differencing should substantially reduce a particular source of small sam-

ple bias that exists in levels LPs when the true data generating process is stationary, but

persistent. Then, using a wide variety of data generating processes for empirically relevant

sample sizes, we show using simulations that the difference specification can substantially

reduce bias and improve confidence interval accuracy over LP regressions specified in levels

for persistent processes, regardless of whether the true process contains a unit root. Fur-

ther, even for data that is less persistent, the differences specification does not demonstrate

any apparent disadvantages over the levels regression. Overall, the differences specification

appears to be an effective approach to reduce bias and improve the accuracy of confidence

intervals in LP estimation of impulse response functions where there is an observed shock,

regardless of the true integration properties of the data. As noted above, this stands in

contrast to the conclusions of an existing literature using structural VARs with internally

identified shocks, such as Gospodinov et al. (2013).

As an application, we consider the question of the effects of U.S. monetary policy shocks

occurring during recessions. There is a significant literature that investigates whether U.S.

monetary policy shocks have different effects on output and inflation when occurring during

recessions vs. expansions, with a number of recent papers using LPs to tackle this question.3

3See, for example, Tenreyro and Thwaites (2016).
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A criticism of this literature is the small sample size available to estimate the effects of policy

shocks occurring during recessions, since recessions account for only approximately 10% of

the post-World War II sample. Such a small sample size is a case where we would expect

to see differences between levels and differences specifications of LPs. We do find significant

differences in this setting, with the output effects of monetary policy shocks occurring during

recessions having larger and more persistent effects when estimated in differences than when

estimated in levels.

The rest of this paper proceeds as follows: Section 2 reviews the local projection ap-

proach to estimate impulse response functions with externally identified, observed, shocks

and discusses standard inference techniques used in the literature. Section 3 uses the stylized

example of an AR(1) data generating process to demonstrate the intuition for some of the

improvements in estimation bias that come from the differences specification. We then move

to our simulation study in Section 4 that considers estimation bias and confidence interval

accuracy for a variety of data generating processes and practical estimation considerations.

Section 5 shows the results of the application to estimation of the state-dependent effects of

monetary policy shocks. Section 6 concludes.

2 Local Projections

Suppose one has an observed shock of interest, labeled εt, and a response variable of

interest, labeled yt. We wish to measure the impulse response at horizon h, up to some

maximum horizon H:

βh =
∂yt+h
∂εt

A local projection to estimate βh is simply a direct multi-step ahead prediction:

yt+h = βhεt + ρh1yt−1 + ρh2yt−2 + · · ·+ ρhpyt−p +
(
γh
)′
Xt + vt+h (1)
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In most applications of local projections, lagged values of the response variable appear as

controls, and we have explicitly allowed for p lags of the response variable in equation (1).4

Additional controls can appear in the vector Xt, and usually include deterministic terms,

such as a constant or deterministic time trends. In some applications, lags of variables other

than the response variable are also included. Since the left hand side is specified in the levels

of the response variable, we refer to equation (1) as the “levels” specification.5

We can alternatively estimate βh using a cumulated differences specification. To begin,

consider a local projection where the response variable is the first difference of yt+h:

∆yt+h = β̃hεt + ρ̃h1∆yt−1 + ρ̃h2∆yt−2 + · · ·+ ρ̃hp∆yt−p + (γ̃h)
′
X̃t + ṽt+h (2)

where β̃h is the impulse response of the first difference of yt+h to the shock εt. We can then

recover βh as:

βh =
h∑
i=0

β̃i (3)

One could estimate βh by first estimating equation (2) and then forming the h-period sum

in equation (3). However, as pointed out by Stock and Watson (2018), we can instead first

sum equation (2), providing the following equation to estimate βh directly:

yt+h − yt−1 = βhεt + θh1 ∆yt−1 + θh2 ∆yt−2 + · · ·+ θhp∆yt−p + (αh)
′
XD
t + ut+h (4)

We refer to equation (4) as the “differences” specification, though the left hand side of this

equation is in terms of the h-period difference of yt+h, rather than the first difference.

While the impulse responses at alternative horizons could be estimated by treating the

H equations as a seemingly unrelated regression that is estimated jointly, it is common in

4Olea and Plagbørg-Moller (2021) refer to LPs with lagged response variables as “lag-augmented” LPs. All
of the LPs we consider in this paper will be lag-augmented in the sense of Olea and Plagbørg-Moller (2021).

5As discussed in Stock and Watson (2018), in most applications εt is likely better considered as an instrument
for the true shock of interest rather than the shock itself. However, to stay consistent with a signifiant
existing literature, here we follow the common specification of including εt in the local projection as the
observed shock.
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the applied LP literature to estimate via equation by equation OLS. Also, as discussed in

Jordá (2005), the disturbance terms in equations (1) and (2) are serially correlated and

follow a moving average (MA) process. Because of this, much of the literature makes use

of robust standard errors to compute confidence intervals on the impulse response βh, with

the Newey-West methodology being a popular choice. The disturbance term in equation (4)

is further complicated by the summation of errors from equation (2). In the remainder of

this paper we will evaluate the performance of equation by equation OLS estimation of the

LP in both the levels and differences specification, as well as the performance of the the

Newey-West methodology for computing standard errors.

3 An Illustrative Example Based on an AR(1) Model

In this section we consider a specific data generating process (DGP), a stationary au-

toregressive model of order 1 (AR(1)) with i.i.d. disturbances. This DGP will allow us to

illustrate analytical results that will aid our intuition regarding the relative effectiveness of

estimating LPs with observed shocks via the levels vs. differences specification. Specifically,

assume the true DGP is:

yt = α + φyt−1 + εt,

where εt is independent and identically distributed with E(εt) = 0 and E(ε2
t ) = σ2. We

begin by assuming that |φ| < 1, thereby focusing attention on the stationary case where the

benefits of differencing are a priori dubious. Later in this section we will consider the unit

root case where φ = 1.

Suppose that εt is the observed shock of interest in the LP.6 The correctly specified levels

specification for the LP is then:

yt+h = cLh + βhεt + ρh1yt−1 + vt+h (5)

6Of course, if εt is observed, the parameter φ can be trivially solved from the AR(1) equation and there is
no need for estimation. In practice however, the econometrician does not know the true DGP.
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where βh = φh, ρh1 = φh+1 and vt+h = εt+h+φεt+h−1+φ2εt+h−2+· · ·+φh−2εt+2+φh−1εt+1. At

first look, the levels LP appears well specified since the regressor εt is independent of each of

the values of εt+j, j > 0 that sum to form the regression disturbance vt+h. However, despite

this independence, the OLS estimate of βh from 5 will be biased because of an expected

non-zero sample correlation between εt and vt+h in finite samples. This non-zero expected

sample correlation arises because of the interaction of the sample means of εt and vt+h in

the sample covariance formula. Specifically, the Appendix shows that the expected sample

covariance, Sεt,vt+h is:

E
(
Sεt,vt+h

)
= −

h−1∑
i=0

φiE (ε̄tε̄t+h−i) (6)

= − σ2

(T − h)2

[
h−1∑
i=0

φi (T − 2h+ i)

]

Equation 6 provides several elements of intuition regarding the expected bias in the OLS

estimate of βh. First, the size of the expected covariance between εt and vt+h depends on the

value of βi = φi for i = 0, . . . h− 1. In other words, the expected covariance depends on the

value of the true IRF at all horizons up to horizon h− 1.7 The more persistent the IRF, the

larger will be these terms in absolute value, which increases the covariance in absolute value.

Second, the expected covariance will grow in absolute value with the horizon h. Third, the

sample size influences the size of the expected covariance. As T grows, the denominator

grows with respect to the numerator and shrinks the size of the covariance.

We now consider how this source of potential bias may be mitigated by estimating the

differences LP. The correctly specified differences LP for the AR(1) DGP is:

yt+h − yt−1 = cDh + βhεt + θh1 ∆yt−1 + · · ·+ θhh∆yt−h + ut+h,

7This result is consistent with Herbst and Johannsen (2022), who use a higher order expansion to characterize
the small-sample bias in the OLS estimator of the levels specification of the LP. They show that the bias in
the LP estimator at horizon h is a function of the true (population) impulse responses at other horizons.
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where again, βh = φh and:

ut+h = (εt+h − εt−1) + φ(εt+h−1 − εt−2) + φ2(εt+h−2 − εt−3)

+ · · ·+ φh−1(εt+1 − εt−h)− φhεt−h−1

As shown in the Appendix, the expected sample covariance between εt and ut+h is:

E(Sεt,ut+h) = φhE (ε̄tε̄t−h−1)−
h−1∑
i=0

φiE (ε̄t(ε̄t+h−i − ε̄t−1−i)) (7)

=
σ2

(T − 2h− 1)2

[
φh[T − 3h− 2]−

h−1∑
i=0

φi [1− h+ 2i]

]

The expected sample covariance from the differences specification in 7 will in general be

much smaller than that from the levels specification in 6. In other words, the observed shock,

εt will display less expected correlation with the regression disturbance in the differences LP

than the levels LP. Figure 1 displays the expected sample covariance from 6 and 7 for the

case where T = 100, σ2 = 1, and for three values of persistence, φ = {0.7, 0.9, 0.95}. The

figure shows that the expected sample covariance between εt and the levels LP regression

disturbance is increasing in absolute value in both horizon and persistence, whereas this is

not the case for the differences LP regression. Also, the expected sample covariance is larger

in absolute value for the levels regression for all horizons beyond h = 1. Figure 2 shows the

same set of experiments for the case where T = 200. Here the expected sample covariance

term is lower for the levels LP regression than when T = 100, but displays the same pattern

and remains significantly larger than that for the differences specification.

The source of the reduction in the expected sample covariance term can be seen through

comparison of equations 6 and 7. In equation 6, each of the expectations E(ε̄tε̄t+h−i), i =

0, 1, . . . , h− 1, creates [T −h+ i] non-zero terms due to overlap between the samples used to

calculate ε̄t and ε̄t+h−i. By contrast, in 7, each of the expectations E (ε̄t(ε̄t+h−i − ε̄t−1−i)),

i = 0, 1, . . . , h − 1, creates only (1 − h + 2i) << (T − h + i) non-zero terms, with this
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reduction due to cancelation of terms caused by the differencing in the expectation. In the

end, regardless of the value of h, equation 7 includes only a single expectation that does

not include such a difference, that being φhE (ε̄tε̄t−h−1). By contrast, equation 6 has h such

terms. As such, the reduction in the expected sample covariance will be larger for larger h.

Also, since these terms in equation 6 are scaled by φi, i = 0, 1, . . . , h − 1, the reduction in

the expected sample covariance seen in equation 7 will be larger for higher values of φ.

The discussion above has focused on the case of the stationary AR model. In the unit

root case, we would not expect to see a mitigation in bias of the type discussed above from

use of the differences specification. To see this, note that in the case where φ = 1, the correct

levels specification is:

yt+h = cLh + βhεt + ρh1yt−1 + vt+h

where βh = 1, ρh1 = 1 and vt+h = εt+h + εt+h−1 + εt+h−2 + · · ·+ εt+2 + εt+1. When φ = 1 the

correct differences specification is:

yt+h − yt−1 = cDh + βhεt + ut+h

where βh = 1, cDh = cLh , and ut+h = vt+h = εt+h + εt+h−1 + εt+h−2 + · · ·+ εt+2 + εt+1. Thus,

in the unit root case, the regression disturbance is the same for the levels vs. differences

specification and thus there is no difference in the finite sample expected correlation between

εt and the regression disturbance term from using one specification vs. the other. With

that being said, we would still expect better finite sample performance from the differences

specification in this case, since it correctly imposes the restriction ρh1 = 1. As we will see in

the simulations below, the gains from imposing this restriction are very large in practice.

The results in this section suggest that when the true data generating process is a sta-

tionary AR(1) with i.i.d. disturbances, and the AR(1) disturbance is the observed shock

of interest, the differences LP should generate a reduction in bias for the impulse response

estimate vs. the levels estimate. This reduction in bias comes through a mitigation of the
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correlation between the observed shock of interest and the LP regression disturbance in the

differences vs. the levels specification. In the unit root case, this mitigation disappears.

However, we would still expect improved performance from the differences specification in

this case, as it correctly enforces restrictions imposed by the integration properties of the

DGP. With this illustrative example as motivation, in the next section we conduct simulation

experiments to investigate the relative performance of the differences LP vs. the levels LP

across a range of data generating processes and persistence levels.

4 Simulation Evidence

In this section we turn to results of a simulation study using a variety of different data

generating processes (DGP) to evaluate the performance of the levels (equation (1)) and

differences (equation (4)) LP specifications. For each of the DGPs considered, we assume

that the true DGP is not known. However, we assume that the shock of interest, labeled

εt in all cases, is externally identified and available. We will consider both univariate and

multivariate DGPs.

We set the control variables in equations (1) and (4) as follows: We include pL lags of

the level of yt in the levels specification and pD lags of the first difference of yt in the differ-

ences specification. For the levels specification, Xt includes a constant and linear time trend

for univariate data generating processes, and additionally contains pL lags of the level of

additional endogenous variables beyond yt for multivariate data generating processes.8 For

the differences specification, XD
t contains a constant for univariate DGPs, and additionally

contains pD lags of the first difference of additional endogenous variables beyond yt for mul-

tivariate DGPs. When estimating each version of the LP models on the simulated data, we

conduct data-based lag selection to select pL and pD via a test-down procedure. Specifically,

a pmax is selected and then a test statistic is formed for the coefficient on the lagged variable

8Our qualitative results are robust to the exclusion of the deterministic trend in the levels specification in
cases where the true DGP does not include a deterministic trend.
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corresponding to pmax using Newey-West standard errors. If this test statistic is greater

than two, then the number of lags is set to pmax. Otherwise, pmax is lowered by one and the

process is repeated. We set the initial value of pmax to equal 8.

For each DGP the results are based on 1000 simulations. We consider two sample sizes,

T = 100 and T = 200, corresponding to 25 and 50 years of quarterly data, which are typical

sample sizes in studies of U.S. macroeconomic data.9 We assess the accuracy of both the

OLS point estimates and Newey-West coverage intervals for impulse responses at horizons up

to and including a maximum horizon of H = 20. In constructing the Newey-West standard

errors the maximum autocorrelation lag is set to H + 1 following Jordá (2005).

4.1 Autoregressive Model

The first DGP considered is a simple Gaussian autoregressive model of order 1 (AR(1)):

yt = α + φyt−1 + εt

εt ∼ i.i.d. N (0, 1) .

We explore three different calibrations for this model, which differ in their level of persistence.

The first specification features a process that is persistent, but clearly stationary in that unit

root tests will have very high power to detect the null of stationarity (φ = 0.70), the second

is a very persistent, though still stationary process (φ = 0.95), while the third is a unit root

process (φ = 1). In all cases, we set the intercept α = 0.10

Figure 3 shows the results of level and differences specification LPs applied to estimate

the impulse response for data generated from the AR(1) model where the sample size is

T = 100. For each value of the autoregressive parameter considered, the figure contains

9Herbst and Johannsen (2022) survey a large number of recent empirical papers utilizing LPs and find that
the median value of T across these studies is 95.

10In this DGP, the shock of interest for which we are estimating impulse responses, εt, is the only source of
stochastic variation. We have also considered cases where an additional source of stochastic variation is
added to the process as in Herbst and Johannsen (2022). Results for this case are similar to those reported
here.
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two sets of results. The left panel shows the true impulse response function (solid line) and

the average estimated impulse response function over the simulations by both the differences

(dash-circle line) and levels (dashed line) specification. The right panel shows the proportion

of simulations where the true value of βh is contained inside of a 90% confidence interval

constructed via the differences specification (dash-circle line) and levels specification (dashed

line).

The figures provide a striking conclusion - for all three persistence levels for the AR(1)

model, the differences specification has less bias and more accurate coverage intervals than

the levels specification. As the persistence of the system increases, the better the perfor-

mance of the differences specification becomes relative to the levels specification. Also, the

relative improvement from the differences specification increases as the horizon of the impulse

response function increases. It is worth emphasizing that the improvement in the differences

specification is still visible even with a process that is clearly stationary.

With this general conclusion in place, we turn to the results in more detail. For the

two stationary cases, the differences specification is approximately unbiased, with coverage

intervals that are somewhat undersized (between 80% and 90% for all horizons). The levels

specification performs reasonably well in the φ = 0.7 case, though it still displays noticeable

downward bias and less accurate coverage intervals than the differences specification. When

φ = 0.95, the performance of the levels specification deteriorates significantly, with estimates

displaying very high levels of bias and coverage intervals that are far below their stated levels.

These inaccuracies become larger as the horizon of the impulse response increases. Finally,

in the unit root case, there is some bias introduced in the differences specification, and

coverage intervals fall to between 60% and 80%. However, the differences specification vastly

outperforms the levels specification in this case. Indeed, the levels specification in the unit

root case has abysmal performance, with estimated impulse responses at the longest horizons

that are less than half of their true value and with 90% Newey-West coverage intervals that

are around 20%.
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It is useful to discuss the relative performance of the levels vs. differences specification

for the AR(1) model in terms of the analytic results from Section 3. From those results, in

the stationary case, the levels specification should generate biased estimates of βh in finite

samples due to an expected small sample correlation between εt and the levels regression

disturbance. We would also expect this source of bias to be substantially mitigated in the

differences specification. Both of these results are born out in the results presented in Figure

3. Section 3 also demonstrated that this source of bias mitigation from the differences

specification should be eliminated in the unit root case, which is consistent with the biased

IRF estimates we see for the differences specification in Figure 3 when φ = 1. However, in

this case, the relative performance of the differences specification vs. the levels specification

in mitigating overall bias is strongest. This is likely due to the correct restriction imposed by

the differences specification in the unit root case, which eliminates the typical finite sample

biases associated with dynamic regressions estimated in levels when there are unit roots.

Overall, these results suggest that the differences specification has advantages over the levels

specification regardless of the integration properties of the data.

Figure 4 shows the results when the sample size is increased to T = 200. These results

are qualitatively similar to the T = 100 case. As would be expected, the performance of the

levels specification improves, in terms of both bias and coverage. However, the differences

specification maintains a distinct performance advantage in all cases considered. Also, it is

worth noting that for the stationary cases, the differences specification now appears to have

very close to correct confidence interval coverage, whereas it was somewhat undersized in

the T = 100 case.
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4.2 Alternative Univariate Models

4.2.1 ARMA(1,1) Model

In this section, we explore the performance of the levels and differences specifications for

univariate DGPs beyond the AR(1) case. We begin with an ARMA(1,1) model:

yt = α + φyt−1 + θεt−1 + εt

εt ∼ i.i.d. N (0, 1)

We again explore three different calibrations for this model, a clearly stationary process

(φ = 0.70), a very persistent, but still stationary, process (φ = 0.95), and a unit root process

(φ = 1.0). In all calibrations, α = 0 and θ = −0.5.

Figure 5 shows the results of the simulations for the ARMA(1,1) model when T = 100,

which are very similar to those for the AR(1) model. In particular, the levels specification

displays significant estimation bias for the impulse response functions and very inaccurate

coverage intervals, with the performance of the levels specification deteriorating as both the

persistence of the process and the horizon of the impulse response increases. The differences

specification performs much better than the levels specification at every level of persistence

considered. In absolute terms, the differences specification is approximately unbiased and

has somewhat undersized coverage intervals at all horizons for the stationary calibrations.

In the unit root case, the differences specification again displays some bias and coverage

intervals that fall further below their nominal level, but still displays large improvements

over the levels specification in this case.

Figure 6 shows the results when the sample size is increased to T = 200. Again, these

results are qualitatively similar to the T = 100 case, with the performance of the levels

specification improving, but the differences specification maintaining a clear performance

advantage. Also, it is again the case that for the stationary cases, the differences specification

has very close to correct confidence interval coverage in the T = 200 case.
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4.2.2 Trend Stationary Unobserved-Components Model

Next we consider a Trend-Stationary Unobserved-Components (UC) model:

yt = Tt + Ct

Tt = µ+ Tt−1

Ct = φ1Ct−1 + φ2Ct−2 + εt

εt ∼ i.i.d. N
(
0, σ2

)
We calibrate the model based on maximum likelihood estimation of this trend-stationary

UC model on log quarterly U.S. GDP, measured from 1969:Q1 to 2007:Q4. This estimation

produced the following calibration:

µ = 0.77;φ1 = 1.22;φ2 = −0.3;σ = 0.76

Figure 7 contains the results of the simulations based on the trend stationary UC model,

and shows again that the differences specification outperforms the levels specification in

all aspects considered. Once again, the impulse response estimates from the differences

specification exhibits very little bias over the entire horizon while the levels specification has

a large downward bias. Also, the differences specification produces confidence intervals with

true coverage much closer to the nominal coverage. It is again notable that the differences

specification provides such large improvements despite the fact that the underlying process

is stationary. Figure 8 shows the results when T = 200, which are again qualitatively similar

to the T = 100 case.

4.2.3 Stochastic Trend Unobserved-Components Model

The final univariate model considered is the Stochastic Trend UC Model detailed below:

16



yt = Tt + Ct

Tt = µ+ Tt−1 + vt

Ct = φ1Ct−1 + φ2Ct−2 + εt

vt ∼ WN
(
0, γ2

)
εt ∼ N

(
0, σ2

)
We again calibrate the model based on maximum likelihood estimation of this stochastic

trend unobserved components model on log quarterly U.S. GDP, measured from 1969:Q1 to

2007:Q4. This estimation produced the following calibration:

µ = 0.77;φ1 = 1.55;φ2 = −0.6; γ = 0.5783;σ = 0.443

Figure 9 contains the results of the simulations based on the stochastic trend UC model,

which again show the differences specification outperforming the levels specification. The

estimates of the IRF from the differences specification display very little bias at any horizon,

while the levels specification produces estimates that display significant bias over most of the

horizon. The differences specification again produces a confidence intervals with noticeably

better coverage properties than the levels specification. Figure 10 shows the results when

T = 200, which are again qualitatively similar to the T = 100 case.

4.3 VAR Models

In this section, we consider a DGP matching the bivariate VAR model considered in

Kilian and Kim (2011):

Yt = (xt, yt)
′

Yt = Φ0 + Φ1Yt−1 +Wt

Wt ∼ N (0,Σ)
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where:

Φ0 =

φ0
1

φ0
2

 , Φ1 =

φ1
11 0

φ1
12 φ1

22


and:

Σ =

σ2
1 σ12

σ12 σ2
2

 ,
The structural shocks are known and equal to:

Ut = Q ∗Wt

where Q is the inverse of the Cholesky factorization of Σ. Define the components of Ut

as Ut = (εt, ut)
′. Our interest is then on the response of the second variable to the first

structural shock:

βh =
∂yt+h
∂εt

For all calibrations, we set: φ0
1 = 0;φ0

2 = 0;φ1
12 = 0.5;φ1

22 = 0.5;σ2
1 = 1, σ12 = 0.3, σ2

2 = 1.

We consider three different values for φ1
11:

φ1
11 = 0.50

φ1
11 = 0.95

φ1
11 = 0.99

Figure 11 show the results of the simulations for the VAR model when T = 100. The

results for the VAR DGP are very similar to the univariate models that we have seen thus

far. The levels specification has a small downward bias at the lowest calibration of φ1
11, with
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the bias increasing as φ1
11 increases and as the horizon increases. The differences specification

has much less bias than the levels impulse response function for all three levels of persistence.

The differences specification produces confidence intervals that are consistently undersized

for all values of φ1
11. However, the coverage of these intervals is much closer to the stated

90% size than those produced from the levels specification, which are extremely undersized.

Figure 12 shows the results when T = 200, which are again qualitatively similar to those when

T = 100. As was the case in earlier simulations, when T = 200 the differences specification

produces confidence intervals with close to correct size.

5 Measuring the Effects of Monetary Policy Shocks

Occurring During Recessions

The previous results have demonstrated that for LPs with an observed shock of interest,

the differences specification of the LP has less bias and better confidence interval coverage

than the levels specification. Among other things, this improvement is increasing for smaller

sample sizes. In this section, we provide an example of the estimation differences one can

obtain in empirical practice from the levels vs. differences specification.

We focus on a long-standing question of empirical interest, the state dependent effects of

U.S. monetary policy shocks. There is substantial interest in whether the effects of monetary

policy are symmetric across multiple dimensions. A significant portion of this literature has

focused on business cycle asymmetry, namely differences in the effects of U.S. monetary

policy when the economy is in an expansion vs. a recession. The ability of LPs to easily

incorporate asymmetries have made LPs a popular empirical approach in the recent literature

on this topic. However, given that the number of U.S. recessions over the sample typically

studied is relatively low, one might expect substantial bias from the levels specification

when estimating the effects of monetary policy shocks occurring during recessions, with a
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commensurate large expected improvement from using the differences specification.11

We begin with a levels specification of the LP, which closely follows Tenreyro and

Thwaites (2016):

yt+h = Ft(β
h
r εt + ρh1,ryt−1 + ρh2,ryt−2 + · · ·+ ρhp,ryt−p + (γhr )

′
Xt) (8)

+ (1− Ft)(βhe εt + ρh1,eyt−1 + ρh2,eyt−2 + · · ·+ ρhp,eyt−p + (γhe )
′
Xt) + vt+h

where yt+h is output measured in log levels at time horizon h, Ft is an indicator variable

indicating if the US economy is in a recession or an expansion, εt is the externally identified

monetary policy shock, and Xt is a control vector. The coefficients of interest are βhr ,

indicating the response of output at horizon h to monetary policy shocks occurring during

recessions, and βhe , indicating this response at horizon h for monetary policy shocks occurring

during expansions.

We can alternatively estimate these state dependent effects using the differences specifi-

cation:

yt+h − yt−1 = Ft(β
h
r εt + θh1,r∆yt−1 + θh2,r∆yt−2 + · · ·+ θhp,r∆yt−p + (αhr )

′
XD
t ) (9)

+ (1− Ft)(βhe εt + θh1,e∆yt−1 + θh2,e∆yt−2 + · · ·+ θhp,e∆yt−p + (αhe )
′
XD
t ) + ut+h.

Following Tenreyro and Thwaites (2016), the control vector Xt will contain a constant, a

linear time trend, and one lag of the Federal Funds Rate. We define the control vector XD
t

to contain a constant and one lag of the Federal Funds Rate. We also follow Tenreyro and

Thwaites (2016) in their use of non-linear Romer and Romer (2004) shocks, which allows

11Recent work by Gonçalves et al. (2023) has called into question the suitability of local projections for
estimating state-dependent macroeconomic effects of policy shocks when the state in question evolves
endogenously to macroeconomic shocks. This is certainly applicable for the literature investigating the
output effects of monetary policy shocks during recessions. Our focus here is on the results given by the
state-dependent LP estimated in levels relative to the LP estimated in differences, and we do not have
reason to expect that the Gonçalves et al. (2023) critique would apply more to one specification vs. the
other. However, the results of Gonçalves et al. (2023) should be kept in mind when interpreting the
absolute IRF estimates for either specification.
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for the reaction function of the Federal Reserve to be non-linear over the business cycle. We

use monthly U.S. industrial production as our measure of output. The monthly National

Bureau of Economic Research (NBER) recession indicator will be used to define Ft in both

the levels and differences specification. We compute impulse response functions for five years

of monthly responses (h = 60). The monthly sample period runs from 1969:03-2008:12. The

sample period ends prior to the onset of the Great Recession, since the interest rate was

near the zero lower bound for most of the duration and aftermath of the recession. Over this

sample period, only 77 months correspond to an NBER recession.

Figure 13 contains the impulse response of industrial production to a one standard-

deviation positive Romer and Romer (2004) monetary policy shock occurring during reces-

sions. The dashed line shows the estimated IRF from the levels specification, while the

dash-circle line shows the estimated IRF from the differences specification. There are sig-

nificant differences in the impulse response estimates produced by the levels vs. differences

specifications. For approximately the first 15 months of the horizon, there is little difference

between the levels and differences specifications. After that point, the difference between

the two specifications increases dramatically, and the estimated response of output in the

differences specification is much larger in absolute value than the estimated response of

output in the levels specification. Overall, the estimates from the differences specification

suggests that the effects of monetary policy shocks occurring during recessions are larger

and more persistent than is suggested by the estimates from the levels specification. This

result is consistent with the bias toward zero observed in the simulation results for the levels

specification of the LP.

6 Conclusion

The local projection methodology has become a popular alternative to VAR models

for the calculation of impulse response functions. However, there is growing evidence that
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standard approaches to estimate local projections have significant bias in the sample sizes

typically utilized for estimation of these models. There are also discrepancies in the litera-

ture with whether local projections are estimated in the log levels of response variables vs.

cumulated differences, with a common assumption being that models estimated in levels are

more reliable.

In this paper, we have conducted a simulation experiment to compare the performance

of local projections estimated in levels vs. cumulated differences on a variety of different

data generating processes including ARMA models, unobserved components models, and

VAR models. We focused on the case where the econometrician has an externally identified,

observed, shock of interest for which they wish to compute impulse response functions.12

The simulations show the estimates from the levels specification are severely biased and

have confidence intervals that are significantly undersized, with these deficiencies growing

larger as both the persistence of the process and the horizon of the impulse response increases.

In contrast, the cumulated differences specification produces striking improvements over the

levels specification in both the amount of bias and confidence interval coverage. In absolute

terms, for most data generating processes and impulse response function horizons considered,

the differences specification produces close to unbiased estimates and confidence intervals

with close to correct coverage. Importantly, the differences specification provides improved

inference even in cases where the underlying DGP is well inside the stationary region. In

other words, these results suggest that the preference for the differences specification does

not hinge on the data containing a unit root.

12An interesting avenue for future research is to extend the results presented here to the case where an
externally identified, observed shock is used as an instrument for an unobserved shock of interest as in
Stock and Watson (2018).

22



References

Auerbach, A. and Y. Gorodnichenko (2013). Fiscal Multipliers in Recession and Expansion.

In A. Alesina and F. Giavazzi (Eds.), Fiscal Policy after the Financial Crisis, Chicago.

University of Chicago Press.
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Appendix

In this appendix we provide additional detail behind the derivation of equations 6 and 7.

Again, we consider an AR(1) data generating process:

yt = α + φyt−1 + εt

where εt is independent and identically distributed with E(εt) = 0 and E(ε2
t ) = σ2. The

correctly specified levels LP for the AR(1) case is:

yt+h = cLh + βhεt + φh+1yt−1 + vt+h

where βh = φh and vt+h = εt+h + φεt+h−1 + φ2εt+h−2 + · · ·+ φh−2εt+2 + φh−1εt+1.

Assume we have T total realizations of the random variable ε. We use these observations

to create two series of observations, εt, t = 1, 2, . . . , T − h and vt+h, t = 1, 2, . . . , T − h. We

are interested in the expectation of the sample covariance:

E(Sεt,vt+h) = E

(
1

T − h

T−h∑
t=1

(εt − ε̄t)(vt+h − v̄t+h)

)

where:

ε̄t =
1

T − h

T−h∑
t=1

εt

v̄t+h =
1

T − h

T−h∑
t=1

vt+h

Expanding and noting that E (εtvt+h) = 0 for h 6= 0 we have:

E(Sεt,vt+h) = −E (ε̄tv̄t+h)
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Now, from the definition of vt+h:

−E (ε̄tv̄t+h) = −E (ε̄tε̄t+h)− φE (ε̄tε̄t+h−1)− φ2E (ε̄tε̄t+h−2)− · · ·−

φh−2E (ε̄tε̄t+2)− φh−1E (ε̄tε̄t+1)

It is straightforward to show that:

E (ε̄tε̄t+h−i) =
σ2

(T − h)2
[T − 2h+ i]

Combining gives us equation 6:

−E (ε̄tv̄t+h) = − σ2

(T − h)2

h−1∑
i=0

φi [T − 2h+ i]

Turning to the cumulated differences LP, the correctly specified LP for the AR(1) DGP

is:

yt+h − yt−1 = cDh + φhεt + θh1 (∆yt−1) + · · ·+ θhh(∆yt−h) + ut+h

where:

ut+h = (εt+h−εt−1)+φ(εt+h−1−εt−2)+φ2(εt+h−2−εt−3)+ · · ·+φh−1(εt+1−εt−h)−φhεt−h−1

As before, assume we have T total realizations of ε. We use these observations to create two

series of observations, εt, t = h+2, h+3, . . . , T −h and ut+h, t = h+2, h+3, . . . , T −h. Each

of these series contains T − 2h− 1 observations. We are again interested in the expectation

of the sample covariance:

E(Sεt,ut+h) = E

(
1

T − 2h− 1

T−h∑
t=h+2

(εt − ε̄t)(ut+h − ūt+h)

)
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where:

ε̄t =
1

T − 2h− 1

T−h∑
t=h+2

εt

ūt+h =
1

T − 2h− 1

T−h∑
t=h+2

ut+h

Using similar calculations as for the levels case we have:

E(Sεt,ut+h) = −E (ε̄tūt+h)

Now, from the definition of ut+h:

−E (ε̄tūt+h) = −E (ε̄t (ε̄t+h − ε̄t−1))− φE (ε̄t (ε̄t+h−1 − ε̄t−2))− φ2E (ε̄t (ε̄t+h−2 − ε̄t−3))

− · · · − φh−2E (ε̄t (ε̄t+2 − ε̄t−h+1))− φh−1E (ε̄t (ε̄t+1 − ε̄t−h))

+φhE (ε̄tε̄t−h−1)

Also, it is straightforward to show that:

E (ε̄t (ε̄t+h−i − ε̄t−1−i)) =
σ2

(T − 2h− 1)2
[1− h+ 2i]

and:

E (ε̄tε̄t−h−1) =
σ2

(T − 2h− 1)2
[T − 3h− 2]

Substituting and rearranging we have equation 7:

−E (ε̄tūt+h) =
σ2

(T − 2h− 1)2

[
φh[T − 3h− 2]−

h−1∑
i=0

φi [1− h+ 2i]

]
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Figure 1
Expected Sample Covariance between Observed Shock

and LP Regression Disturbance
T = 100

(a) φ = 0.7 (b) φ = 0.9

(c) φ = 0.95

Notes: This figure displays the expected sample covariance from equations 6 and 7 when T = 100, σ2 = 1, and

φ = {0.7, 0.9, 0.95}. In each sub-figure, the black solid line is the expected sample covariance from the levels specification

of the LP, while the black dashed line is the expected sample covariance from the cumulated differences specification of the LP.
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Figure 2
Expected Sample Covariance between Observed Shock

and LP Regression Disturbance
T = 200

(a) φ = 0.7 (b) φ = 0.9

(c) φ = 0.95

Notes: This figure displays the expected sample covariance from equations 6 and 7 when T = 200, σ2 = 1, and

φ = {0.7, 0.9, 0.95}. In each sub-figure, the black solid line is the expected sample covariance from the levels specification

of the LP, while the black dashed line is the expected sample covariance from the cumulated differences specification of the LP.
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Figure 3
AR Model (T = 100)

φ = 0.7

φ = 0.95

φ = 1.0

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the true

DGP is an AR(1) model and T = 100. Results for three alternative values of the autoregressive parameter (φ = {0.7, 0.95, 1.0})

are displayed. The left column shows the average impulse response function estimate for the levels specification (dashed line)

and differences specification (dash-circle line), as well as the true impulse response function (solid line). The right column shows

the 90% confidence interval coverage of the true impulse response function for the levels specification (solid line) and differences

specification (dash-circle line).
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Figure 4
AR Model (T = 200)

φ = 0.7

φ = 0.95

φ = 1.0

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the true

DGP is an AR(1) model and T = 200. Results for three alternative values of the autoregressive parameter (φ = {0.7, 0.95, 1.0})

are displayed. The left column shows the average impulse response function estimate for the levels specification (dashed line)

and differences specification (dash-circle line), as well as the true impulse response function (solid line). The right column shows

the 90% confidence interval coverage of the true impulse response function for the levels specification (solid line) and differences

specification (dash-circle line).
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Figure 5
ARMA(1,1) Model (T = 100)

φ = 0.7

φ = 0.95

φ = 1.0

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when

the true DGP is an ARMA(1,1) model and T = 100. Results for three alternative values of the autoregressive parameter

(φ = {0.7, 0.95, 1.0}) are displayed. The moving average parameter is set to -0.5. The left column shows the average impulse

response function estimate for the levels specification (dashed line) and differences specification (dash-circle line), as well as the

true impulse response function (solid line). The right column shows the 90% confidence interval coverage of the true impulse

response function for the levels specification (solid line) and differences specification (dash-circle line).
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Figure 6
ARMA(1,1) Model (T = 200)

φ = 0.7

φ = 0.95

φ = 1.0

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when

the true DGP is an ARMA(1,1) model and T = 100. Results for three alternative values of the autoregressive parameter

(φ = {0.7, 0.95, 1.0}) are displayed. The moving average parameter is set to -0.5. The left column shows the average impulse

response function estimate for the levels specification (dashed line) and differences specification (dash-circle line), as well as the

true impulse response function (solid line). The right column shows the 90% confidence interval coverage of the true impulse

response function for the levels specification (solid line) and differences specification (dash-circle line).
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Figure 7
Trend Stationary UC Model (T = 100)

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the true

DGP is a Trend Stationary Unobserved Components model where µ = 0.77, φ1 = 1.22, φ2 = −0.3, and σ = 0.76 and T = 100.

These parameter values were obtained by calibrating the model based on estimations of quarterly real GDP from 1969:Q1 to

2007:Q4. The left column shows the average impulse response function estimate for the levels specification (dashed line) and

differences specification (dash-circle line), as well as the true impulse response function (solid line). The right column shows

the 90% confidence interval coverage of the true impulse response function for the levels specification (solid line) and differences

specification (dash-circle line).
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Figure 8
Trend Stationary UC Model (T = 200)

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the true

DGP is a Trend Stationary Unobserved Components model where µ = 0.77, φ1 = 1.22, φ2 = −0.3, and σ = 0.76 and T = 200.

These parameter values were obtained by calibrating the model based on estimations of quarterly real GDP from 1969:Q1 to

2007:Q4. The left column shows the average impulse response function estimate for the levels specification (dashed line) and

differences specification (dash-circle line), as well as the true impulse response function (solid line). The right column shows

the 90% confidence interval coverage of the true impulse response function for the levels specification (solid line) and differences

specification (dash-circle line).
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Figure 9
Stochastic Trend UC Model (T = 100)

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the

true DGP is a Stochastic Trend Unobserved Components model where T = 100 and the parameters are set to µ = 0.77, φ1 =

1.55, φ2 = −0.6, γ = 0.5783, and σ = 0.443. These parameter values were obtained by calibrating the model based on estimations

of quarterly real GDP from 1969:Q1 to 2007:Q4. The left column shows the average impulse response function estimate for the

levels specification (dashed line) and differences specification (dash-circle line), as well as the true impulse response function

(solid line). The right column shows the 90% confidence interval coverage of the true impulse response function for the levels

specification (solid line) and differences specification (dash-circle line).
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Figure 10
Stochastic Trend UC Model (T = 200)

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the

true DGP is a Stochastic Trend Unobserved Components model where T = 200 and the parameters are set to µ = 0.77, φ1 =

1.55, φ2 = −0.6, γ = 0.5783, and σ = 0.443. These parameter values were obtained by calibrating the model based on estimations

of quarterly real GDP from 1969:Q1 to 2007:Q4. The left column shows the average impulse response function estimate for the

levels specification (dashed line) and differences specification (dash-circle line), as well as the true impulse response function

(solid line). The right column shows the 90% confidence interval coverage of the true impulse response function for the levels

specification (solid line) and differences specification (dash-circle line).
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Figure 11
VAR Model (T = 100)

φ1
11 = 0.50

φ1
11 = 0.95

φ1
11 = 0.99

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the true DGP is a VAR

model and T = 100. Results are shown for three alternative values of φ1
11 = {0.50, 0.95, 0.99}. Other parameters are set as described in Section

4.3. The left column shows the average impulse response function estimate for the levels specification (dashed line) and differences specification

(dash-circle line), as well as the true impulse response function (solid line). The right column shows the 90% confidence interval coverage of the

true impulse response function for the levels specification (solid line) and differences specification (dash-circle line).
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Figure 12
VAR Model (T = 200)

φ1
11 = 0.50

φ1
11 = 0.95

φ1
11 = 0.99

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the true DGP is a VAR

model and T = 200. Results are shown for three alternative values of φ1
11 = {0.50, 0.95, 0.99}. Other parameters are set as described in Section

4.3. The left column shows the average impulse response function estimate for the levels specification (dashed line) and differences specification

(dash-circle line), as well as the true impulse response function (solid line). The right column shows the 90% confidence interval coverage of the

true impulse response function for the levels specification (solid line) and differences specification (dash-circle line).
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Figure 13
Impulse Response Function of Industrial Production to

Monetary Policy Shock Occurring During Recession

Notes: This figure shows the impulse response function of U.S. Industrial Production to a one standard-deviation positive

Romer and Romer (2004) monetary policy shock occurring during an NBER recession month. The estimated response using

the levels specification is the dashed line, while the estimated response using the differences specification is the dash-circle line.

The monthly sample period used for estimation extends from 1969:03-2008:12.
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