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1 Introduction

Following Jordá (2005), local projections (LP) have become a popular approach to esti-

mate impulse response functions (IRFs). In the empirical macroeconomics literature specif-

ically, LP are now commonly used as an alternative to the usual IRFs estimated via vector

autoregressive (VAR) models. The popularity of LP arises in large part to their ease of use.

LP are simple to estimate and draw inference on, requiring only the use of single equation

linear regressions. The structure of LP also makes it straightforward to accommodate state-

dependent and non-linear specifications, though recent results in Gonçalves et al. (2024) call

into question the consistency and interpretation of state-dependent IRFs estimated by LP.1

Beyond their ease of implementation, LP place few restrictions on the shape of the IRF,

contributing to confidence intervals that are substantially more robust to misspecification

than VAR models (Montiel Olea et al. (2024)).2 As LP increase in popularity, there is a

growing theoretical literature studying the asymptotic properties of LP and their relation to

VAR models.3

The popularity of LP has also benefited from a corresponding growth in macroeconomic

studies that estimate the dynamic response of variables to externally identified, “observed”,

shocks (Ramey (2016), Stock and Watson (2018)). In these studies, a researcher obtains an

exogenous shock of interest through some procedure external to the estimation of the impulse

response. Once this exogenous shock is in hand, a simple and natural approach to estimate

the h horizon impulse response is to regress a response variable of interest at horizon h on

the observed shock at time t. This type of estimation is exactly what the LP provides, and

as studies with observed shocks have proliferated, so has the use of LP. In the remainder of

1The literature using state-dependent LP is crowded, with early examples provided by Auerbach and Gorod-
nichenko (2013), Tenreyro and Thwaites (2016), and Ramey and Zubairy (2018).

2Li et al. (2024) show that this robustness comes at the cost of significantly higher estimation variance as
compared to VARs. The choice of LP vs. VAR then partially depends on a researcher’s preferences over
estimation bias and variance.

3Examples include Montiel Olea and Plagborg-Møller (2021), Plagborg-Møller and Wolf (2021), Montiel
Olea et al. (2024), Gonçalves et al. (2024) and Xu (2023). Jordá and Taylor (2025) provide a recent survey
of the LP literature.
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this paper we will refer to these observed shock local projection regressions as simply LP,

while acknowledging that “local projections” is a term used to also represent settings where

shocks are identified internally to the local projection regression. An increasingly common

extension of LP is to consider the observed shocks not as the ultimate shock of interest, but

instead as an instrument for an endogenous treatment (Jordá et al. (2015)). In the following

we refer to these instrumental variable local projections as LP-IV.

In this paper we will be interested in a necessary specification choice made when estimat-

ing LP and LP-IV, and how this choice impacts the performance of the associated impulse

response estimators. Specifically, in the literature employing LP (LP-IV), there are differ-

ences in the way the response variable is specified, as well as how lagged response variables

enter as controls. Consider a response variable yt and suppose we are interested in the hori-

zon h impulse response estimate, where throughout the paper we assume that h is a finite,

non-negative integer. Most studies specify the LP (LP-IV) regression in levels, where yt+h is

the estimand, and values of yt−1, yt−2, . . . , yt−pL are possibly included as controls. A smaller

number of studies use a cumulated differences, or long-differenced, specification, in which

the estimand is (yt+h − yt−1) and values of ∆yt−1,∆yt−2, . . . ,∆yt−pD are possibly included as

controls. In some references, both the levels and long-differenced specification are presented

(Stock and Watson (2018), Jordá and Taylor (2025)). However, most recent applications

have focused on the levels specification, and Li et al. (2024) note that the use of data in

levels represents applied practice.

The levels vs. long-differenced specification estimate the same impulse response, and

should provide comparable estimates in large samples. At the same time, there is now ample

evidence that standard OLS estimates of IRFs via LP specified in levels are biased and

produce incorrect confidence intervals in finite samples, particularly in the relatively small

sample sizes used in the empirical macroeconomics literature. Using simulations, Kilian and

Kim (2011) find asymptotic confidence intervals from LP are less accurate than bias-adjusted

VAR bootstrap confidence intervals, though this analysis relates to LP regressions for which
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shocks are identified internally to the estimation, which is not the focus of our paper. Herbst

and Johannsen (2024) document that LP estimated with observed shocks are in practice

often used with small samples in the time dimension, and that point estimates of IRFs from

LPs can be severely biased on these sample sizes. This is especially true when the process

under consideration is persistent, as is the case with most macroeconomic series of interest.

Building on these results, a small number of papers have presented attempts to reduce finite-

sample bias and improve the accuracy of confidence intervals in LP regressions. Herbst and

Johannsen (2024) use an approximate bias function to characterize and partially account

for the bias in the LP regression, while Montiel Olea and Plagborg-Møller (2021) find that

bootstrapped LP generate improved confidence interval accuracy in finite samples.

These studies finding finite sample bias in LP regressions have focused on LP specified in

levels, and have not considered the performance of LP specified in long differences. Despite

their large sample equivalence, the demonstrated poor performance of the levels LP specifi-

cation in empirically relevant sample sizes leaves open the possibility that long-differenced

specifications may provide improvements. In this paper we fill this gap by conducting a

simulation study to evaluate the finite sample performance of LP and LP-IV specified in

levels vs. long differences.

We begin with the example of an AR(1) with i.i.d. disturbances, and demonstrate ana-

lytically that long differencing has the promise of substantially reducing a particular source

of small sample bias that exists in levels LP when the true data generating process (DGP) is

stationary, but persistent. In the unit root case this particular advantage disappears, but a

new one emerges, which is that the long-differenced LP imposes a correct parameter restric-

tion on the levels specification. Then, using a wide variety of DGPs for empirically relevant

sample sizes, we show using simulations that the long-differenced specification substantially

reduces bias and improves confidence interval accuracy over LP regressions specified in levels.

These improvements are larger as the persistence of the impulse response increases, as the

sample size shrinks, and as the horizon of the response increases. Even for data that is less
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persistent, the long-differenced specification does not demonstrate any apparent disadvan-

tages over the levels regression in terms of estimation bias or confidence interval coverage.

For some of the DGPs considered the long-differenced estimator displays higher simple vari-

ance than the levels estimator, though the size or existence of this difference is not uniform

across DGPs and parameter calibrations. Overall, the long-differenced specification appears

to be an effective approach to reduce bias and improve the accuracy of confidence intervals

in LP and LP-IV estimation of IRFs.

As an application, we revisit the effects of Jarociński and Karadi (2020) monetary policy

shocks and Federal Reserve information shocks on U.S. output and prices. We find notable

differences in the estimated effects of these shocks from the levels vs. long-differenced LP

specifications. Further, the long-differenced specification consistently produces estimated

effects that are larger in absolute value.

The rest of this paper proceeds as follows: Section 2 reviews the local projection ap-

proach to estimate IRFs with externally identified, observed, shocks and discusses standard

inference techniques used in the literature. Section 3 uses the stylized example of an AR(1)

to demonstrate the intuition for the improvements in estimation bias that come from the

long-differenced specification. Extensions of these results to a VAR(p) are presented in Ap-

pendix B. Section 4 presents our simulation study that considers estimation bias, confidence

interval accuracy, and estimation variance for a variety of data generating processes and

practical estimation considerations. Section 5 discusses the application to estimation of the

output effects of monetary policy shocks. Section 6 concludes.

2 Local Projections

Suppose one observes an exogenous shock of interest, labeled st, and a response variable

of interest, labeled yt. We wish to measure the impulse response at horizon h, up to a finite
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maximum horizon H:

βh =
∂yt+h

∂st
, h = 0, 1, . . . , H

The levels specification of the LP to estimate βh is simply the direct multi-step ahead pre-

diction:

yt+h = βhst + ρ1,hyt−1 + ρ2,hyt−2 + · · ·+ ρpL,hyt−pL + γ
′

hXt + vt+h, (1)

where the exogeneity of st implies that E (stvt+h) = 0. In most applications of LP, lagged

values of the response variable appear as controls, and we have explicitly allowed for pL lags

of the response variable in equation (1). Additional controls can appear in the vector Xt,

and usually include deterministic terms, such as a constant or deterministic time trends. In

some applications, lags of variables other than the response variable are also included.

We can alternatively estimate βh using a cumulated differences specification. To begin,

consider a local projection where the response variable is the first difference of yt+h:

∆yt+h = β̃hst + ρ̃1,h∆yt−1 + ρ̃2,h∆yt−2 + · · ·+ ρ̃pD,h∆yt−pD + γ̃
′

hX̃t + ṽt+h, (2)

where ∆yt+h = yt+h − yt+h−1 and β̃h is the impulse response of ∆yt+h to the shock st. We

can then recover βh as:

βh =
h∑

i=0

β̃i (3)

One could estimate βh by first estimating equation (2) and then forming the sum in equation

(3). However, as pointed out by Stock and Watson (2018), we can instead first sum equation

(2), providing the following equation to estimate βh directly:

∆hyt+h = βhst + θ1,h∆yt−1 + θ2,h∆yt−2 + · · ·+ θpD,h∆yt−pD + α
′

hX
D
t + ut+h, (4)

where ∆hyt+h = yt+h−yt−1. We refer to equation (4) as the “long-differenced” specification.4

4If we derive equation (4) directly from equation (1) there will be pD = pL + h lagged first differences of
the response variable on the right-hand side of the long-differenced specification. The parameters on these
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While the impulse responses at alternative horizons could be estimated by treating the H

equations as a seemingly unrelated regression that is estimated jointly, it is common in the

applied LP literature to estimate via equation by equation OLS. Also, as discussed in Jordá

(2005), the disturbance terms in equations (1) and (2) are serially correlated and follow a

moving average (MA) process. Because of this, much of the literature makes use of robust

standard errors to compute confidence intervals for βh, with the Newey-West methodology

being a popular choice. The disturbance term in equation (4) is further complicated by

the summation of errors from equation (2). In the remainder of this paper we will evaluate

the performance of equation by equation OLS estimation of the LP in both the levels and

long-differenced specification, as well as the performance of the Newey-West methodology

for computing standard errors. Recent studies by Montiel Olea and Plagborg-Møller (2021)

and Herbst and Johannsen (2024) have argued for the use of heteroskedasticity robust stan-

dard errors, rather than HAC standard errors, when conducting inference with LP. Thus,

in Section 4.4 we consider the robustness of our results to the use of Eicker-Huber-White

standard errors.

We will also be interested in the common case where st is endogenous, but we have an

available instrument, labeled εt (Stock and Watson (2018)). In this case, we can implement

local projections using instrumental variable methods, commonly known as LP-IV (Jordá

et al. (2015)). For example, taking a two-stage least squares approach, ŝt will replace st in

the levels and long-differenced specifications:

yt+h = βhŝt + ρ1,hyt−1 + ρ2,hyt−2 + · · ·+ ρp,hyt−p + γ
′

hXt + vIVt+h (5)

∆hyt+h = βhŝt + θ1,h∆yt−1 + θ2,h∆yt−2 + · · ·+ θp,h∆yt−p + α
′

hX
D
t + uIV

t+h, (6)

lagged variable will follow the mapping θj,h =
p∑

i=1

ρi,hI (i ≤ j ≤ h+ 1), where I (·) is the indicator function.

These restrictions could be enforced on the long-differenced specification to ensure the same number of
parameters are present in the lag structure for both the levels and long-differenced specification. This could
potentially enhance efficiency for the long-differenced specification, though we do not explore this possibility
here.
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where ŝt is the fitted value from a first stage regression:

st = γεt + δ
′
XIV

t + ηt, (7)

and XIV
t contains controls, including deterministic terms, for the first stage regression. Con-

ditions for instrument validity are outlined in Stock and Watson (2018), and include a

standard relevance condition, as well as a lead-lag exogeneity condition that requires εt to

be uncorrelated with vt+h, ∀ h.

3 An Illustrative Example Based on an AR(1)

In this section we consider a specific DGP, an autoregression of order 1 (AR(1)). Herbst

and Johannsen (2024) derive the approximate finite sample bias for the levels LP in the AR(1)

case. Here we present analytic expressions that will aid our intuition regarding the relative

effectiveness of estimating LP via the levels vs. long-differenced specification. Appendix A

presents additional details behind these expressions, while Appendix B extends the analysis

to a VAR(p).

The AR(1) DGP is:

yt = α + β0st + ϕyt−1 + ωt. (8)

The observed shock of interest is st, and at this point is assumed to be strictly exogenous,

so that E (stωt+j) = 0, ∀ j. By virtue of st being a “shock” in the traditional sense, we

assume that E (stst+j) = 0, ∀ j ̸= 0. For simplicity, we assume that st ∼ i.i.d. (µs, σ
2
s) and

ωt ∼ i.i.d. (0, σ2
ω), where extension to the heteroskedastic case would be straightforward.

We set µs = 0 without loss of generality. We begin by assuming |ϕ| < 1, thereby focusing

attention on the stationary case where the benefits of long-differencing might be considered

dubious a priori. Later in this section we will consider the unit root case where ϕ = 1.
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The correct levels specification for the LP is:

yt+h = cLh + βhst + ρ1,hyt−1 + vt+h (9)

where βh = β0ϕ
h, ρ1,h = ϕh+1 and vt+h =

h−1∑
i=0

βist+h−i +
h∑

i=0

ϕiωt+h−i. Despite the fact that

st is uncorrelated with each of the values of st+j, j > 0 and ωt+j, j ≥ 0 that contribute to

the regression disturbance vt+h, the OLS estimate of βh will be biased in finite samples in

part because of an expected non-zero sample covariance between st and vt+h. This non-zero

expected sample covariance arises because of the interaction of the sample means of st and

vt+h in the sample covariance formula. Specifically, Appendix A shows that the expected

sample covariance, covst,vt+h
, is:

E
(
covst,vt+h

)
= −

h−1∑
i=0

βiE
(
s̄[0]s̄[h−i]

)
=

σ2
s

T 2

[
−

h−1∑
i=0

βi (T − h+ i)

] (10)

where s̄0 is the sample mean of st calculated over the period t = 1 → T and s̄[h−i] is the

sample mean of st calculated over the period t = (1 + h− i) → (T + h− i).

Equation 10 provides several elements of intuition regarding the expected bias in the OLS

estimate of βh. First, the size of the expected covariance between st and vt+h depends on the

value of βi = β0ϕ
i for i = 0, . . . h−1. In other words, the expected covariance depends on the

value of the true IRF at all horizons up to horizon h− 1. The more persistent the IRF, the

larger will be these terms in absolute value, which increases the covariance in absolute value.

Second, the expected covariance will grow in absolute value with the horizon h. Third, the

sample size influences the size of the expected covariance. As T grows, the denominator

grows with respect to the numerator and shrinks the size of the covariance.

Herbst and Johannsen (2024) derive an analytic approximation to the finite sample bias in

the levels LP estimator of βh for the AR(1) case, and it worth connecting our results to their
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approximation. Equation (6) in Herbst and Johannsen (2024) decomposes the approximate

finite sample bias into two components. The first arises because of the need to estimate

the intercept in equation (9). This source of bias corresponds to the non-zero expected

covariance in Equation (10), which would disappear if there was no need for an intercept in

the levels specification of the LP. Specifically, if the true DGP did not include an intercept,

and the intercept was omitted from Equation (9), then the term E
(
s̄[0]s̄[h−i]

)
would cease

to be relevant for bias as sample means would no longer appear in the OLS estimator. The

second source of bias documented by Herbst and Johannsen (2024) is that related to the

need to estimate ρ1,h in equation (9), where this bias grows with the persistence of yt−1
5.

Figure 1 shows results of an initial simulation experiment based on the AR(1) DGP

in (8), where we consider two sample sizes T = {100; 200} and three persistence levels

ϕ = {0.70, 0.90, 0.95}. We set β0 = 1 so that βh = ϕh, α = 0, and σ2
s/σ

2
ω = 1.6 Both

disturbances, st and ωt, are generated from normal distributions. Each panel of the figure

shows the true IRF (solid line), as well as the average value of β̂h (dashed line) across 5000

simulations, where β̂h is the OLS estimate from the levels LP specification in (9). The results

of the simulation confirm the intuition provided above. Specifically, there is finite-sample

bias in β̂h, and this bias increases in magnitude as the persistence of the true IRF rises and as

the sample size decreases. To assess the source of the bias, we repeat these simulation where

the intercept in Equation (9) is set equal to its true value of zero. The results for this case

are presented in Figure 2, and show that the bias in β̂h is eliminated when ϕ = {0.7, 0.9}.

When ϕ = 0.95 a very substantial portion of the bias is eliminated, but we begin to see bias

remaining due to the high persistence of yt−1, which was the second source of bias identified

by Herbst and Johannsen (2024).

We now consider how bias may be mitigated by estimating the long-differenced LP. The

5See also Rossi (2005).
6This signal to noise ratio has very little effect on the bias observed in the levels and long-differenced LP
estimators. This is discussed in more detail in Section 4.4.
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correctly specified long-differenced LP for the AR(1) DGP is:

∆hyt+h = cDh + βhst + θ1,h∆yt−1 + · · ·+ θh+1,h∆yt−h−1 + ut+h, (11)

where βh = β0ϕ
h, θi,h = ϕh+1 and:

ut+h =
h−1∑
i=0

βi(st+h−i − st−1−i)− βhst−h−1 +
h∑

i=0

ϕi(ωt+h−i − ωt−1−i)

As shown in Appendix A, the expected sample covariance between st and ut+h is:

E(covst,ut+h
) = βhE

(
s̄[0]s̄[−(h+1)]

)
−

h−1∑
i=0

βiE
(
s̄[0](s̄[h−i] − s̄[−(i+1)])

)
=

σ2
s

T 2

[
βh (T − h− 1)−

h−1∑
i=0

βi (1− h+ 2i)

] (12)

The expected sample covariance from the long-differenced specification in 12 will in gen-

eral be much smaller than that from the levels specification in 10. In other words, the

observed shock, st will display less expected correlation with the regression disturbance in

the long-differenced LP than the levels LP. Figure 3 displays the expected sample covariance

from 10 and 12 for the case where T = {100, 200}, σ2
s = 1, β0 = 1 and for three values

of persistence, ϕ = {0.7, 0.9, 0.95}. The figure shows that the expected sample covariance

between st and the levels LP regression disturbance is increasing in absolute value in both

horizon and persistence, whereas this is not the case for the long-differenced LP regression.

Also, the expected sample covariance is larger in absolute value for the levels regression for

all horizons beyond h = 1.

The source of the reduction in the expected sample covariance term can be seen through

comparison of equations 10 and 12. In equation 10, each of the expectations E(s̄[0]s̄[h−i]), i =

0, 1, . . . , h−1, creates (T − h+ i) non-zero terms due to overlap between the samples used to

calculate s̄[0] and s̄[h−i]. By contrast, in 12, each of the expectations E
(
s̄[0](s̄[h−i] − s̄[−(i−1)])

)
,
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i = 0, 1, . . . , h − 1, creates only (1 − h + 2i) << (T − h + i) non-zero terms, with this

reduction due to cancelation of terms caused by the differencing in the expectation. In the

end, regardless of the value of h, equation 12 includes only a single expectation that does

not include such a difference, that being ϕhE
(
s̄[0]s̄[−(h+1)]

)
. By contrast, equation 10 has

h such terms. As such, the reduction in the expected sample covariance will be larger for

larger h. Also, since these terms in equation 10 are scaled by βh = β0ϕ
i, i = 0, 1, . . . , h− 1,

the reduction in the expected sample covariance seen in equation 12 will be larger for higher

values of ϕ.

To see the benefits of long differencing for reducing bias, Figure 4 repeats the simulation

experiment of Figure 1, but where β̂h is the OLS estimate from the long-differenced LP

specification in 11. The average value of β̂h across 5000 simulations is displayed with a dash-

circle line, while the true value of the IRF is again a solid line. The results of the simulation

are striking. In all cases considered, long-differencing essentially erases any bias present for

the levels LP specification. This initial simulation evidence suggests that long-differencing

may be a powerful bias-reduction strategy in LPs.

The benefits of long-differencing extend to the LP-IV setting where st is endogenous, but

we have an available instrument, labeled εt. Suppose the DGP again has AR(1) structure:

yt = α + β0st + ϕyt−1 + ωt,

where st is i.i.d.(µs, σ
2
s), ωt is i.i.d.(0, σ2

ω), and st is now endogenous such that E (stωt) ̸=

0. Without loss of generality we set µs = 0. The instrument, εt is assumed i.i.d.(0, σ2
ε),

and satisfies a lead-lag exogeneity condition, E (εtωt+j) = 0, ∀ j. Assume the relationship

between εt and st is described by the first stage regression:

st = λ+ γεt + ηt,

where E (εtηt) = 0 and without loss of generality we set λ = 0. In order to provide compa-
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rable expectations, as well as to focus on the effects of long-differencing, we assume that γ

is known. From the first-stage we then obtain ŝt = γεt, and the correctly specified LP-IV in

levels is:

yt+h = cLh + βhŝt + ρ1,hyt−1 + vIVt+h

vIVt+h = vt+h + βhηt,

while the correctly specified long-differenced LP-IV is:

∆hyt+h = cDh + βhŝt + θ1,h∆yt−1 + · · ·+ θh+1,h∆yt−h−1 + uIV
t+h,

uIV
t+h = ut+h + βhηt.

As shown in Appendix A:

E
(
covŝt,vIVt+h

)
= κE

(
covst,vt+h

)
E
(
covŝt,uIV

t+h

)
= κE

(
covst,ut+h

) (13)

In words, the expected covariance between the regressor of interest and the regression dis-

turbance is proportional in the LP and LP-IV models, where this is true for both the levels

and long-differenced specification with the same constant of proportionality. This implies

that the relative benefits from long-differencing will be similar in the LP-IV and LP models.

The discussion above has focused on the case of the stationary AR(1) model. In the unit

root case, we would not expect to see a mitigation in the bias associated with estimation

of the intercept from use of the long-differenced specification. Returning to the LP case for

simplicity, note that when ϕ = 1 the correct levels specification is:

yt+h = cLh + βhst + ρ1,hyt−1 + vt+h

where βh = β0, ρ1,h = 1 and vt+h =
h−1∑
i=0

β0st+h−i +
h∑

i=0

ωt+h−i. The correct long-differenced

specification is:
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∆hyt+h = cDh + βhst + ut+h

where βh = β0, c
D
h = cLh , and ut+h = vt+h =

h−1∑
i=0

β0st+h−i +
h∑

i=0

ωt+h−i. Thus, in the unit root

case, the regression disturbance is the same for the levels vs. long-differenced specification

and there is thus no difference in the finite sample expected covariance between st and the

regression disturbance term from using one specification vs. the other. With that being

said, we would still expect improved finite sample performance from the long-differenced

specification. As Herbst and Johannsen (2024) show, a component of the bias in the levels

specification of the LP for the AR(1) case is due to the need to estimate ρ1,h in highly per-

sistent processes. The long-differenced specification eliminates this requirement by correctly

imposes the restriction ρ1,h = 1.

As an initial investigation into the expected gains from imposing this restriction, Figure

5 extends the simulation experiments of Figures 1 and 4 to the case where ϕ = 1. Here we

see significant bias in both the levels and long-differenced LP. However, the long-differenced

specification displays much less bias than the levels LP, and indeed shows some of the largest

bias improvements for any of the persistence levels considered. Thus, the bias reduction from

long-differencing in the unit root case might be especially large.

The results in this section suggest that when the true DGP is a stationary AR(1), the

long-differenced LP (LP-IV) will yield an impulse response estimate with less finite-sample

bias than that produced by the levels LP (LP-IV). This reduction in bias comes through a

mitigation of the correlation between the observed shock of interest and the LP regression

disturbance in the long-differenced vs. the levels specification. In the unit root case, this

mitigation disappears. However, we still see improved bias performance from the long-

differenced specification in this case, as it correctly enforces restrictions imposed by the

integration properties of the DGP.

The analytical and simulation results in this section were specific to the AR(1) pro-

cess, and the simulations further assumed knowledge of the correct LP regression, including

controls. With this illustrative example as motivation, in the next section we conduct a
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broader range of simulation experiments to investigate the relative performance of the long-

differenced LP (LP-IV) vs. the levels LP (LP-IV) in empirically relevant settings, including

a range of DGPs unknown to the econometrician, varying persistence levels, and varying

sample sizes. Estimator performance will be assessed not only in terms of bias, but also

confidence interval coverage and estimator variance.

4 Simulation Evidence

In this section we present results of a simulation study using a variety of different data

generating processes (DGP) to evaluate the performance of the levels (equation (1)) and

long-differenced (equation (4)) LP specifications. The response variable is labeled yt+h in all

cases. For each of the DGPs for y considered, we assume that the true DGP is unknown

to the econometrician. We begin by considering cases where the shock of interest, labeled

st in all cases, is externally identified and available, and turn in Section 4.5 to cases where

st represents an endogenous treatment, and we observe an instrument εt. We consider both

univariate and multivariate DGPs.

We set the control variables in equations (1) and (4) as follows: We include pL lags of the

level of yt in the levels specification and pD lags of the first difference of yt in the differences

specification. For the levels specification, Xt includes a constant for univariate DGPs, and

additionally contains pL lags of the level of additional endogenous variables beyond yt for

multivariate DGPs. For DGPs that produce data with trending behavior, Xt also includes

a linear time trend.7 For the differences specification, XD
t contains a constant for univariate

DGPs, and additionally contains pD lags of the first difference of additional endogenous

variables beyond yt for multivariate DGPs. When estimating each version of the LP models

on the simulated data, we conduct data-based lag selection to select pL and pD via a test-

down procedure, where the procedure begins with pmax = 12. The sensitivity of our results

to lag selection is discussed in Section 4.4.1.

7This will include both trend stationary DGPs and DGPs with stochastic trends that include drift.

15



For each DGP the results are based on 5000 simulations. We consider three sample sizes,

T ∈ {100, 200, 300}. Herbst and Johannsen (2024) survey 71 recent empirical papers utilizing

LPs and find that the median value of T across these studies is 95, while 20% have sample

sizes as large as 200 and 6% have sample sizes as large as 300.8 As increases in the sample

size tend to have fairly monotonic effects on our simulation results, we present results for

T ∈ {100, 200} in the main text, and record the results for T = 300 in Appendix C. We assess

the bias of the OLS point estimates of βh and accuracy of Newey-West coverage intervals

for impulse responses at horizons up to and including a maximum horizon of H = 20. In

constructing the Newey-West standard errors the maximum autocorrelation lag is set to

H + 1 following Jordá (2005). In order to assess potential bias-variance tradeoffs in the

levels vs. long-differenced LP estimators, we also report the simple standard deviation of

the estimates of βh.

4.1 Higher Order Autoregressive Models

We begin by considering AR(p) models. As Section 3 already presented simulation results

for an AR(1) model, we focus here on a higher order case, namely an AR(8):

yt = α + β0st +
8∑

i=1

ϕiyt−i + ωt,

where ωt ∼ i.i.d. N (0, σ2
ω), st ∼ i.i.d. N (0, σ2

s), and E (stωt+j) = 0,∀ j. We set σ2
ω = σ2

s = 1,

and discuss sensitivity to this parameterization in section 4.4.

We explore several different calibrations for this model, which differ in their level of

persistence. To vary the level of persistence, we consider three alternative values for the

sum of the AR coefficients, ρ =
8∑

i=1

ϕi. The first specification features a process that is

persistent, but clearly stationary in that unit root tests will have very high power to detect

8Herbst and Johannsen (2024) consider a sample size of T = 50 for simulated local projection estimation
based on an AR(1) DGP. All DGPs we consider in this section generate higher order dynamics than an
AR(1), and would in many cases lead to heavily parameterized LP regressions relative to a sample size of
T = 50. Thus, we focus on minimum sample sizes of T = 100.
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the null of stationarity (ρ = 0.70), the second is a very persistent, though still stationary

process (ρ = 0.95), while the third is a unit root process (ρ = 1). In all cases, we set

the intercept α = 0. To set the specific AR parameters, which will determine the shape

of the IRF, we first fit an AR(8) model to quarterly log real U.S. GDP from 1947:Q1 to

2024:Q3, the largest dataset available at the time of this writing. Figure 6 shows the IRF

implied by this estimation, which follows the typical “hump shaped” pattern often seen in

U.S. macroeconomic data. In our simulations, we then scale the autoregressive parameter

estimates from the estimated AR(8) by a constant to achieve the desired value of ρ. This

will create data with IRFs of similar shape to that implied by the data, but with varying

levels of persistence.

Figure 7 shows results where the sample size is T = 100. For each value of ρ considered,

the figure contains three sets of results. The left panel shows the bias in the average estimated

IRF across simulations for both the levels (dashed line) and long-differenced (dash-circle line)

specification. The middle panel shows the proportion of simulations where the true value of

βh is contained inside of a 90% confidence interval constructed via the levels specification

(dashed line) and long-differenced specification (dash-circle line). Finally, the right panel

shows the ratio of the standard deviation of the impulse response estimate for the long-

differenced specification to that for the levels specification.

Figure 7 provides a clear conclusion: For all three persistence levels for the AR(8) model,

the long-differenced specification produces estimates with less bias and confidence intervals

with more accurate coverage than the levels specification. As both the persistence of the pro-

cess and the horizon of the IRF increase, the better the performance of the long-differenced

specification relative to the levels specification. It is worth emphasizing that bias reduction

from using the long-differenced specification is still visible even with a process that is clearly

stationary.

With this general conclusion in place, we turn to the results in more detail. For the

two stationary cases, the long-differenced specification produces approximately unbiased es-
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timates, and 90% confidence intervals that are undersized (between 75% and 90% for all

horizons). The levels specification performs reasonably well in the ϕ = 0.7 case, though it

still displays noticeable downward bias and less accurate coverage than the long-differenced

specification. When ϕ = 0.95, the performance of the levels specification deteriorates sig-

nificantly, with estimates displaying very high levels of bias and confidence intervals with

coverage far below their stated levels. These inaccuracies become larger as the horizon of

the impulse response increases. Finally, in the unit root case, there is some bias introduced

in the long-differenced specification, and coverage intervals fall to between 65% and 80%.

However, the long-differenced specification vastly outperforms the levels specification in this

case. Indeed, the levels specification in the unit root case has abysmal performance, with

bias around 70% of the true value at the longest horizons and 90% confidence intervals with

coverage around 35%.

Of course, an estimator with better bias properties may come at the expense of increased

estimator variance (Li et al. (2024)). To investigate this possibility, the third column of

Figure 7 displays the ratio of the simple standard deviation of the estimate of βh from the

long-differenced specification to that from the levels specification. Here we see that the

long-differenced estimator does have higher variance, with the standard deviation for this

estimator 5-20% higher than for the levels estimator at most horizons.

Figure 8 shows the results when the sample size is increased to T = 200. These results

are qualitatively similar to the T = 100 case. As would be expected, the performance of

both the levels and long-differenced specification improves, in terms of both bias and cover-

age. However, the long-differenced specification maintains a distinct performance advantage.

Also, for ρ = 0.95 and ρ = 1.0, the levels and long-differenced estimators now have very close

to the same estimator variance. Appendix Figure C-1 shows the results when T = 300, and

demonstrates a continued convergence of the performance of the two estimators, but with

still clear bias reduction produced by the long-differenced LP, particularly at higher persis-

tence levels. Finally, Appendix Figure C-2 contains results when ρ = 0.5. At this lower
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persistence level the levels and long-differenced estimators have similar performance.

4.2 Unobserved Components Models

We next consider several different so-called unobserved components (UC) DGPs, which

are popular descriptive models of macroeconomic aggregates.9 We will consider both uni-

variate and multivariate UC models. In addition to their empirical relevance, these models

can provide interesting features not present in the univariate AR models studied to this

point, including moving-average dynamics and cointegration.

Each of the UC models we consider will include a “cyclical” or “transitory” component,

Ct, which will follow a covariance-stationary AR(2) process:

Ct = ϕ1Ct−1 + ϕ2Ct−2 + st

st ∼ i.i.d. N
(
0, σ2

s

)
,

where the roots of the lag polynomial (1− ϕ1L− ϕ2L
2) have modulus greater than one.

In the simulations, st will correspond to the observed, exogenous, shock of interest. The

alternative UC models will differ in their treatment of trends, the presence of multivariate

information, and the presence of additional transitory dynamics. We will consider three

alternative models:

Trend-Stationary UC Model

yt = Tt + Ct

Tt = µ+ Tt−1

This UC model is equivalent to a trend-stationary AR model, and as such is a natural ex-

tension of the covariance stationary AR models studied in the previous section. Specifically,

this will allow us to investigate the impact of time trends on the performance of the levels

and long-differenced estimators.

9The literature applying UC models to macroeconomic time series is vast. Early citations include Harvey
(1985), Watson (1986), Clark (1987), Harvey and Jaeger (1993) and Kuttner (1994).
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Stochastic Trend UC Model

yt = Tt + Ct

Tt = µ+ Tt−1 + vt

vt ∼ i.i.d. N
(
0, σ2

v

)
By matching moments, one can see that this model is equivalent to a restricted ARIMA(2,1,2)

for yt (Harvey (1985)). Thus, this model provides us with an extension in the form of MA

dynamics over the AR models with unit roots (ARIMA(p,1,0)) considered earlier.

Common Trends and Common Cycles UC Model

yi,t = ai + Tt + biCt + ei,t, i = 1, 2, . . . , 3

Tt = µ+ Tt−1 + vt

vt ∼ i.i.d. N
(
0, σ2

v

)
ei,t ∼ i.i.d. N

(
0, σ2

i

)
In this model, each series, indexed by i, shares a common stochastic trend (Tt) and a common

cyclical component (Ct), and additionally contains an idiosyncratic transitory component.

The model implies that the vector Yt = (y1,t, y2,t, y3,t)
′ is cointegrated with cointegrating

vectors (1,−1, 0)′ and (1, 0,−1)′. This DGP will then provide us with some insight into how

levels vs. long-differenced LPs behave when applied to data generated from a cointegrated

system.

To calibrate the UC DGPs, we estimate each UC model via maximum likelihood on a

sample of U.S. macroeconomic aggregates from 1947:Q1 to 2024:Q3, which was the longest

sample available at the time of writing. The Trend Stationary and Stochastic Trend UC

models are popular for decomposing real GDP into permanent and transitory components,

and so we estimate these model using log real GDP for yt. The common trends and common

cycles UC model is often proposed as a model for a multivariate system of NIPA aggregates,

such as real GDP, consumption and investment (Kim and Piger (2002)). To estimate this
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model, we define y1t as log real GDP, y2t as log real personal consumption expenditures, and

y3t as log real gross private domestic investment. For the purpose of calculating IRFs, we

set yt = y1t, so our simulation reflects the response of log real GDP to st.

Figures 9 and 10 contain the results of the simulations based on the calibrated UC DGPs

when T = 100 and T = 200 respectively, while Appendix Figure C-3 contains the T = 300

results. As each of these DGPs produce data for yt that display clear trending behavior, we

include a time trend in the conditioning set of the levels LP. For these various UC GDPs

there is again a clear conclusion: The impulse response estimates from the long-differenced

specification exhibit essentially no bias over the entire horizon while the estimates from the

levels specification have significant bias. Also, the long-differenced specification produces

confidence intervals with true coverage much closer to the nominal coverage. Thus, in this

expanded set of DGPs, long differencing continues to demonstrate impressive bias reduction

properties.

The final column of Figures 9 and 10 display the relative standard deviation of the long-

differenced LP estimator to the levels LP estimator. Here, there is mixed evidence. Despite

the significant bias reductions, for the trend-stationary UC model there does not appear

to be any bias / variance tradeoff in this case, as the long-differenced estimator has lower

variance than the levels estimator at most horizons. In contrast, for the stochastic trend

UC DGP, the long-differenced estimator has higher variance. Finally, in the UC DGP with

cointegration, the direction of the relative variance depends on the sample size and horizon.

Thus, whether the long-differenced or levels LP estimator has higher variance appears to be

DGP, horizon, and sample size dependent.

4.3 VAR Models

In this section we consider VAR DGPs. We begin with a simple bivariate VAR(1) used

by Kilian and Kim (2011) in their simulations evaluating inference from the levels LP. This

VAR will allow us to study the performance of the levels and long-differenced LP estimators
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in a stylized setting where we can clearly control certain model features. We then move to

a larger VAR DGP calibrated to U.S. macroeconomic data.

4.3.1 Kilian and Kim (2011) Bivariate VAR(1)

The Kilian and Kim (2011) bivariate VAR(1) is specified as follows. Consider a vector

of variables defined as Yt = (xt, yt)
′ that follows a VAR(1) process:

Yt = Φ0 + Φ1Yt−1 +Wt

Wt ∼ i.i.d. N (0,Σ) ,

where:

Φ0 =

ϕ0
1

ϕ0
2

 , Φ1 =

ϕ1
11 0

ϕ1
12 ϕ1

22

 , Σ =

σ2
1 σ12

σ12 σ2
2

 .

The structural shocks are equal to Ut = Q ∗ Wt, where Q is the inverse of the Cholesky

factorization of Σ. Define the first component of Ut as st, which will serve as our observed,

exogenous, shock of interest. Our interest is then on the response of yt+h to st. For all

calibrations, we set ϕ0
1 = 0, ϕ0

2 = 0, ϕ1
12 = 0.5, ϕ1

22 = 0.5, σ2
1 = 1, σ12 = 0.3, and σ2

2 = 1. We

present results for three alternative values for ϕ1
11 = {0.7, 0.95, 1.0}, which will serve to vary

the persistence of the effect of st on yt+h.

Figures 11 and 12 show the results of simulations for this VAR model when T = 100 and

T = 200 respectively. The results for the VAR DGP are very similar to the other DGPs

we have seen thus far. The levels specification has a small downward bias at the lowest

calibration of ϕ1
11, with the bias increasing as ϕ1

11 increases and as the horizon increases. The

long-differenced specification has much less bias than the levels IRF for all three levels of

persistence, and is approximately unbiased for the stationary versions of the DGP. The long-

differenced specification produces confidence intervals that are generally undersized for all
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values of ϕ1
11. However, the coverage of these intervals is much closer to the stated 90% size

than those produced from the levels specification, which are extremely undersized. Finally,

the long-differenced specification produces estimates with generally similar variance to, and

in some cases less than, the estimator from the levels specification. Results for a larger

sample size, T = 300, as well as a lower value of ϕ1
11, are contained in Appendix Figures C-4

and C-5. These results show progressions similar to that seen for the univariate AR models.

4.3.2 Christiano et al. (2005) 9-Variable VAR(4)

We now turn to the performance of the levels and long-differenced LP estimators when

the DGP is a medium scale VAR estimated on U.S. macroeconomic data. In their study

of bias correction for the levels LP, Herbst and Johannsen (2024) simulate data from the

Christiano et al. (2005) 9-variable VAR(4), where the model parameters are estimated on

a sample spanning from 1965:Q3-1995:Q3, the same dates as in Christiano et al. (2005).10

Here we estimate the same VAR over the same sample period. Following Herbst and Jo-

hannsen (2024), our focus is on the effects of a monetary policy shock on log real GDP, the

log real GDP Deflator, and the Federal Funds Rate. The monetary policy shock is identified

recursively. As in Herbst and Johannsen (2024), the monetary policy shock, which serves

as st in our notation, is assumed observed in the generated data. To maintain an accurate

comparison to Herbst and Johannsen (2024) we also follow their assumption that the econo-

metrician uses four lags of all variables in the levels LP regressions. We further set the lag

order for the long-differenced LP also to four. Thus, for this DGP, we do not conduct lag

selection.

Figures 13 and 14 display the results for sample sizes T = 100 and T = 200 respectively,

while Appendix Figure C-6 shows results for the T = 300 case. In the figures, “Real GDP

Response” indicates the response of the first variable in the VAR to the monetary policy

10The nine variables in the Christiano et al. (2005) VAR are, in this order, quarterly U.S. quarterly log
real GDP, log real consumption, log real investment, log GDP deflator prices, log real wages, log labor
productivity, the federal funds rate, log real profits, and the growth rate of M2.
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shock, which was the position of log Real GDP in the estimated VAR. The other panels are

similarly defined. Beginning with the Levels LP, there is noticeable bias in the IRF estimator

for the levels LP for all three responses considered and for both sample sizes. The amount of

bias matches closely that reported in Figure 7 of Herbst and Johannsen (2024). In contrast,

the long-differenced estimator produces estimates with very little bias in the T = 100 case,

and essentially no bias in the T = 200 case.

Herbst and Johannsen (2024) provide an analytic approximate to the finite sample bias

in the levels LP estimator, and use this approximation to propose a bias-corrected estimator.

While their procedure produces noticeable bias improvements, it leaves behind a significant

portion of the bias produced by the LP estimator. As one example, in their Figure 7, the

bias corrected estimator eliminates about one-third of the bias observed in the real GDP

response for the T = 100 case. Thus, it is striking that long differencing, which is trivial

to implement, produces such drastic improvements, eliminating essentially all of the bias

observed for the Christiano et al. (2005) VAR DGP.

Moving beyond bias, the second columns of Figures 13 and 14 show that confidence

intervals for the long-differenced LP estimator are more accurate than those from the levels

estimator in all cases, and often very substantially so. Finally, the third columns show that

for this DGP, the long-differenced LP estimator does have larger variance than the levels LP

estimator. The extent of this difference varies significantly over sample size, horizon, and

which variable the response is being measured for.

4.4 Additional Robustness Checks

In this section we consider three additional robustness checks. The first is the sensitivity

of the results to the choice of lag order in the levels and long-differenced LPs. The second is

the effect of changing the variance of the observed shock (σ2
s) relative to other noise in the

process. Finally, we assess the effects of an alternative approach to standard error calculation

on the coverage properties of confidence intervals.
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4.4.1 Choice of Lag Order

With one exception, the preceding results have been generated assuming that lag selection

is performed by the econometrician when implementing the levels and long-differenced LPs.

For this reason, the results represent a mixture of cases where the estimated model contains

less than, equal to, and more than the true number of lags. In this section we will investigate

the importance of lag order for the performance of both the levels and long-differenced LP. We

focus on the case of the AR(8) DGP, where we can both precisely control the correct lag order,

as well as evaluate significant departures from the correct lag order in both directions. For

all simulations we set the value of ρ = 0.95 and T = 100. The results when T = {200, 300}

are qualitatively similar.

We conduct several experiments. In the first, we assume that the correct lag order for the

long-differenced and levels LP are known. For stationary versions of the AR(8), these lag

orders will be pL = 8 for the levels LP, and pD = 8+h for the long-differenced LP. The top row

of Figure 15 contains the results under this correct lag order assumption. Interestingly, the

estimator bias and confidence interval coverage are similar to those shown in Figure 7 when

lag selection is performed. The main difference seen is for the relative standard deviation

of the estimators, which shows a significant increase in the variance of the long-differenced

LP relative to the levels LP, especially at the longer horizons. This likely comes due to the

large number of parameters being estimated in the correctly specified long-differenced LP

at longer horizons, since the number of lags in this specification grows with the horizon. As

discussed in footnote 4, there are implied parameter restrictions on the long-differenced LP

that could be imposed to reduce this proliferation of parameters. However, given that the

bias reduction is largely unchanged from when using lag selection, it is unclear what the

value added of this approach would be.

Montiel Olea and Plagborg-Møller (2021) argue for “lag-augmented” levels LPs, which

refers to the use of level LP regressions with lags beyond the correct lag order. Lag-

augmented LP have a number of favorable properties, including an asymptotic distribution
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that is uniform over persistence. The middle row of Figure 15 evaluates the case where the

levels LP is lag augmented with pL = 9. As we have already seen that the long-differenced

LP has significantly higher estimator variance with “correct” lag orders, we here simply set

pD = 9 for this set of simulations. The results here are largely unchanged from those in

Figure 7, suggesting that lag augmentation does not play a significant role in affecting the

types of finite-sample bias we are focused on in this paper.

Our final experiment investigates the effects of simply controlling for a single lag, so

that pL = pD = 1, which is not an uncommon practice in the literature.11 The final panel

of Figure 15 demonstrates that the effects of this significant under-parameterization are

minimal on the bias, confidence interval coverage, or relative variance observed in the levels

and long-differenced LP estimators.

Overall, the results of this section suggest that for LPs with observed shocks, performing

lag selection generates results that are no worse than, and sometimes better than, use of

the correct lag order, lag augmentation, or simply fitting a model with one lag. Most

importantly for this paper, the long-differenced estimator continues to be a powerful bias

reduction strategy under all of these lag order choice assumptions.

4.4.2 Relative Variance of the Observed Shock

For each of the DGPs used above, there has been a calibration of the variance of the

observed shock (σ2
s) to the variance of the other contemporaneous stochastic elements of the

DGP. Stated differently, there was a calibration of the amount of variation in yt explained

by st. In most cases this was empirically estimated, but in other cases, such as the AR(8),

this was set in a non-data based manner.

Here we investigate the robustness of our results to changes in this assumption, focusing

on the case of the AR(8) model. In the baseline results for the AR(8) DGP we set σ2
s/σ

2
ω = 1.

Here we conduct two alternative experiments, corresponding to σ2
s/σ

2
ω = {0.5, 2.0}. To econ-

11See, for example, Tenreyro and Thwaites (2016).
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omize on figures we focus on the case where T = 100 and ρ = 0.95, though the conclusions

drawn from alternative sample sizes and values for ρ are similar.

In their study of finite-sample bias in levels LPs, Herbst and Johannsen (2024) demon-

strate that an approximation to the bias observed in the levels LP is not a function of the

variance of the observed shock relative to the overall variance of yt. The results from our

simulations, presented in Figure 16, suggest that this approximation is accurate. For ease of

reference, the top panel of 16 shows the baseline results when σ2
s/σ

2
ω = 1. A comparison of

this baseline case to the alternative values of σ2
s/σ

2
ω finds little change in the results.

4.4.3 Eicker-Huber-White Standard Errors

Montiel Olea and Plagborg-Møller (2021) show that when LPs are lag-augmented, Eicker-

Huber-White (EHW) heteroskedasticity robust standard errors are asymptotically sufficient.

Further, Herbst and Johannsen (2024) find that in finite samples there is downward bias in

Newey-West standard errors for LPs, and this bias is alleviated through the use of EHW stan-

dard errors. These are important results, as most of the literature considers heteroskedastic-

ity and autocorrelation consistent standard errors, typically the Newey-West standard errors

that we have considered here (Jordá (2005), Ramey (2016)).

Figures 17 and 18 show the 90% confidence interval coverage for each of the DGPs we

have considered, where EHW standard errors are used to construct confidence intervals, and

T = 100 and 200 respectively. Given the results of the previous section, we do not assume

that LPs are lag-augmented, but instead focus on LPs with lag selection.

There are two main conclusions from the results in Figures 17 and 18. First, if one

compares the coverage intervals computed using EHW to those from the corresponding

figures based on Newey-West, the EHW intervals generally have improved coverage for both

the levels and long-differenced LP. For example, consider the AR(8) DGP where ρ = 0.95

and T = 100, which is displayed in the middle panel of the top row of Figure 17. In this case,

the long-differenced LP produces confidence intervals with approximately correct coverage,
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and the levels LP produces confidence intervals with undersized coverage ranging from 0.85

to 0.7. In contrast, from the middle panel of the second row of Figure 7, the long-differenced

LP produces confidence intervals that are undersized and around 0.8, while the levels LP

produces confidence intervals with undersized coverage ranging from 0.7 to 0.6.

The second conclusion is that despite the improved coverage performance seen with EHW

standard errors, the long-differenced LP continues to produce more accurate coverage than

the levels-LP in nearly all cases. This improvement continues to be, in many cases, quite

significant. Overall, these results are supportive of recent arguments made for the use of

EHW standard errors for LPs.

4.5 LP-IV

In the preceding simulations we have assumed that the shock of interest, st, is exogenous.

We now turn to simulations where st is endogenous, but we have an instrument available, and

can thus implement LP-IV. The results of Section 3 are suggestive that the bias correction

provided by long-differencing will extend to this case.

To economize on results we restrict our attention to the AR(8) DGP:

yt = α + β0st +
8∑

i=1

ϕiyt−i + ωt,

To model endogeneity, we assume st is described by the following first-stage regression:

st = λ+ γεt + ηt

where εt ∼ i.i.d. N (0, σ2
ε) and (ωt, ηt)

′ ∼ i.i.d.MVN (02,Ω) with:

Ω =

 σ2
ω σωη

σωη σ2
η


By construction, the instrument in this DGP satisfies the lead-lag exogeneity condition for
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instrument validity in LP (Stock and Watson (2018)).

To calibrate the parameters of the AR(8) DGP, we follow the strategy outlined in section

4.1. That is, we consider three alternative values for the sum of the AR coefficients, ρ =
8∑

i=1

ϕi,

corresponding to ρ = {0.7, 0.95, 1.0}, set α = 0, β0 = 1, and set the ϕi based on an AR(8)

model fit to quarterly log real U.S. GDP, scaled to achieve the desired value of ρ. Finally,

we again set σ2
ω = σ2

s = 1. To parameterize the first stage regression we set γ = 1 and

set σ2
ε and σ2

η to simultaneously achieve σ2
s = 1 and a population F-statistic for the first

stage regression of 10.5. This later choice is meant to maintain an empirically reasonable

instrument strength while also largely avoiding simulation draws in which instruments are

weak (Staiger and Stock (1997)). We set the covariance parameter σωη = −0.5.

Figure 19 presents results for the bias in the LP and LP-IV estimators for various values

of ρ = {0.7, 0.95, 1.0} and T = {100, 200}. In each figure, the dashed line and dashed-circle

line shows the median bias for the levels and long-differenced LP estimators respectively.12

Looking across these graphs we see significant bias in both estimators arising in part from

the endogeneity of the LP. The dashed-x and dashed-square lines show the median bias for

the levels and long-differenced LP-IV. Here we see that LP-IV eliminates significant portions

of the bias observed for the LP estimators. Also, once LP-IV is used, we again see that long-

differencing produces significant additional bias reduction over the levels LP-IV, with the

amount of this bias reduction of a similar size as for the case where the shock was exogenous.

5 The Effects of U.S. Monetary Policy Shocks vs.

Federal Reserve Information Shocks

In this section we provide an application to illustrate the estimation differences one

can obtain in empirical practice from the levels vs. long-differenced LP specification. In

12We focus on median, rather than mean, bias as the simulations infrequently draw a case with weak
instruments, which causes an estimated parameter with outsized effects on the mean.
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particular, we revisit the results of Jarociński and Karadi (2020) on the effects of Federal

Reserve monetary policy shocks vs. information shocks. Specifically, Jarociński and Karadi

(2020) separate high-frequency surprises in Federal Reserve interest rate announcements

into two components, one being a traditional monetary policy shock, and the other being

a revelation of Federal Reserve private information regarding the future direction of the

economy. Jarociński and Karadi (2020) identify this “central bank information” (CBI) shock

separately from the monetary policy (MP) shock via a set of restrictions including high

frequency identification and sign restrictions. These restrictions are imposed inside of a

Bayesian VAR, from which impulse response functions can be obtained. Here we revisit

the effects of these shocks by directly incorporating the estimated MP and CBI shocks of

Jarociński and Karadi (2020) into local projections.

To estimate the LP regressions, we focus on a monthly specification with five variables.

Three of these variables are used in the baseline specification of Jarociński and Karadi (2020),

and include the logarithm of the monthly average of the S&P 500 index, the Gilchrist and

Zakraj̆sek (2012) excess bond premium, and the one-year Treasury bond yield. The other

two variables measure output and the price level, and consist of the logarithm of industrial

production and the logarithm of the consumer price index. In their baseline specification

Jarociński and Karadi (2020) use monthly interpolations of real GDP and the GDP Deflator

as their measures of output and prices, and use industrial production and the consumer

price index as a robustness check, obtaining similar results. Here we use the latter as this

data is more readily accessible.13 Updated values for the Jarociński and Karadi (2020) MP

and CBI shocks are obtained from Marek Jarociński’s website.14. We produce results for

the effects of both shocks on 100 times the logarithms of industrial production and the CPI,

and for each response variable we use 12 lags of the remaining four monthly variables as

13We obtain data for industrial production, the consumer price index, and the one-year Treasury yield
from the Federal Reserve Economic Database (FRED), with codes INDPRO, CPIAUCSL, and DGS1
respectively. Data on the S&P 500 index was obtained using a combination of Yahoo Finance data and
FRED code SP500. Finally, the excess bond premium was obtained from the dataset provided for Bauer
and Swanson (2023) on Michael Bauer’s website (https://www.michaeldbauer.com/research/).

14https://marekjarocinski.github.io/jkshocks/jkshocks.html
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controls for both the levels and long-differenced LP, matching the VAR lag length used in

Jarociński and Karadi (2020). Our sample begins in February 1990, which is the first date

that the Jarociński and Karadi (2020) shock series is available, and ends in December 2019

to avoid contamination from the global pandemic. We use data on lagged controls prior to

February 1990 as needed to avoid eliminating early observations of the shock series from the

estimation.

Figure 20 shows the responses of industrial production and the CPI to one-standard

deviation positive MP and CBI shocks, where the dashed line indicates the levels LP estimate

and the dash-circle line indicates the long-differenced LP estimate. We consider monthly

horizons up to three years (H = 36). The graph also contains shading to indicate 90%

confidence intervals produced using Newey-West standard errors, where the darkest shading

indicates areas of the parameter space included in the confidence intervals for both the

levels and long-differenced specifications, the lightest shading indicates inclusion in only the

levels specification confidence interval, and medium shading indicates inclusion in only the

long-differenced specification confidence interval.

There are several items of interest from these results. Most importantly for our study,

there are noticeable differences in the estimated IRF produced by the levels vs. long-

differenced specification. For all cases and horizons considered, the long-differenced specifi-

cation produces an estimate farther from zero, suggestive of larger effects. The magnitude

of the differences in these estimates over the three year horizon are large. For example, the

cumulated levels specification estimate of the effects of a monetary policy shock on industrial

production is -1.3%, while this climbs to -8.6% using the long-differenced specification. For

the CPI effects of a monetary policy shock, these numbers are -1.2% and -3.4% respectively.

Finally, the long-differenced specification confidence intervals are wider than those from the

levels specification, consistent with the simulation evidence we have presented indicating

that the levels confidence intervals are undersized.

Though LP and VAR based IRF will estimate the same IRF asymptotically, they can give
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very different answers in finite samples, particularly at longer horizons (Plagborg-Møller and

Wolf (2021),Montiel Olea et al. (2024)). Given this, it is interesting to compare the results

we obtain via LP to those reported in Jarociński and Karadi (2020) via their Bayesian VAR.

For the monetary policy shock, both levels and long-differenced LP produce IRF that match

the shape and sign of the estimated responses reported in Appendix C of Jarociński and

Karadi (2020). The LP estimated response of industrial production to a Federal Reserve in-

formation shock is also similar to that estimated from the Bayesian VAR. The most notable

difference is the CPI response to a Federal Reserve information shock. By virtue of this

being an information shock, Jarociński and Karadi (2020) predict that a positive Federal

Reserve information shock will be associated with higher future prices. Consistent with this,

they estimate a positive response of the CPI to a positive information shock. Likewise, the

response estimated from the levels LP varies between positive and negative values depending

on horizon, but with an overall cumulative positive response over the 3 year horizon. How-

ever, the response estimated from the long-differenced specification is negative over most

horizons, suggesting a different directional response of prices to this information shock.

6 Conclusion

We have investigated the finite sample performance of local projections estimated in levels

vs. long differences when there is an exogenous shock of interest available (LP) or there is

an instrument for such a shock (LP-IV). We present analytic results suggestive that long-

differencing should reduce the finite sample bias visible in levels LP and LP-IV estimates.

We then conduct a simulation experiment on a variety of different data generating processes

including AR models, unobserved components models, and VAR models.

The simulations confirm that the estimates from the levels LP and LP-IV specifica-

tion are severely biased and have confidence intervals that are significantly undersized, with

these deficiencies growing larger as both the persistence of the process and the horizon of
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the impulse response increases. In contrast, the long-differenced LP and LP-IV specifica-

tions provide striking improvements over the levels specification in both the amount of bias

and confidence interval coverage. In absolute terms, for most data generating processes and

impulse response horizons considered, the long-differenced specification produces close to

unbiased estimates and confidence intervals with still undersized, but close to correct cov-

erage. Importantly, the long-differenced specification provides improved inference even in

cases where the underlying DGP is well inside the stationary region. Overall, our results

suggest that long-differencing is a powerful tool to improve the estimation performance of

LP and LP-IV regressions.

It is worth emphasizing that the results in this paper are focused specifically on the

empirically popular practice of using local projections to estimate impulse response functions

when the observed shock of interest, or instrument for such a shock, is available. In cases

where this is not true, and shocks are identified internally to the estimation of the local

projection, it is unclear whether long-differencing would yield fruitful improvements. Indeed,

in this case the lessons from the VAR literature are likely salient, in that differencing in

stationary or cointegrated systems can create non-invertibility issues for recovering structural

shocks (Gospodinov et al. (2013)).

We conclude by discussing two directions for future research. First, the application

of long-differenced LP and LP-IV in this paper has freely estimated the parameters on the

lagged first differences that enter as controls. A variance reduction device, through shrinkage

or imposition of parameter restrictions as discussed in footnote 4, may be useful for lowering

estimation variance. Second, as the effect of the shock of interest became nearly permanent or

exactly permanent, the long-differenced estimator retains a portion of the finite sample bias

exhibited in the levels estimator, especially at longer horizons. In these cases it may prove

fruitful to employ a local-to-unity device tailored specifically for long horizon estimation in

highly persistent processes to improve the approximated small sample distribution of the

long-differenced estimator (Rossi (2005, 2007), Pesavento and Rossi (2006)).
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Figure 1
Estimated IRF from Levels LP and AR(1) DGP

ϕ = 0.7, T = 100 ϕ = 0.9, T = 100 ϕ = 0.95, T = 100

ϕ = 0.7, T = 200 ϕ = 0.9, T = 200 ϕ = 0.95, T = 200

Notes: This figure displays simulation results from estimation of the levels specification of the LP when the true DGP is

an AR(1) model. Results for three alternative values of the autoregressive parameter (ϕ = {0.7, 0.9, 0.95}), as well as two

alternative sample sizes T = {100, 200} are displayed. Each figure shows the average impulse response function estimate for

the levels specification (dashed line) and the true impulse response function (solid line).
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Figure 2
Estimated IRF from Levels LP and AR(1) DGP

No Intercept in DGP or in Estimated LP

ϕ = 0.7, T = 100 ϕ = 0.9, T = 100 ϕ = 0.95, T = 100

ϕ = 0.7, T = 200 ϕ = 0.9, T = 200 ϕ = 0.95, T = 200

Notes: This figure displays simulation results from estimation of the levels specification of the LP when the true DGP is an

AR(1) model with no intercept, and no intercept is included in the LP regression. Results for three alternative values of the

autoregressive parameter (ϕ = {0.7, 0.9, 0.95}), as well as two alternative sample sizes T = {100, 200} are displayed. Each figure

shows the average impulse response function estimate for the levels specification (dashed line) and the true impulse response

function (solid line).
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Figure 3
Expected Sample Covariance between Observed Shock

and LP Regression Disturbance

ϕ = 0.7, T = 100 ϕ = 0.9, T = 100 ϕ = 0.95, T = 100

ϕ = 0.7, T = 200 ϕ = 0.9, T = 200 ϕ = 0.95, T = 200

Notes: This figure displays the expected sample covariance from equations 10 and 12 when T = {100, 200}, and ϕ =

{0.7, 0.9, 0.95}. In each sub-figure, the black solid line is the expected sample covariance from the levels specification of

the LP, while the black dashed line is the expected sample covariance from the long-differenced specification of the LP.

39



Figure 4
Estimated IRF from Long-Differenced LP and AR(1) DGP

ϕ = 0.7, T = 100 ϕ = 0.9, T = 100 ϕ = 0.95, T = 100

ϕ = 0.7, T = 200 ϕ = 0.9, T = 200 ϕ = 0.95, T = 200

Notes: This figure displays simulation results from estimation of the levels specification of the LP when the true DGP is

an AR(1) model. Results for three alternative values of the autoregressive parameter (ϕ = {0.7, 0.9, 0.95}), as well as two

alternative sample sizes T = {100, 200} are displayed. Each figure shows the average impulse response function estimate for

the long-differenced specification (dash-circle line) and the true impulse response function (solid line).
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Figure 5
Estimated IRF for Unit Root AR(1) DGP

ϕ = 1.0, T = 100 ϕ = 1.0, T = 200

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is an AR(1) model with ϕ = 1. Results for two alternative sample sizes T = {100, 200} are displayed. Each figure

shows the average impulse response function estimate for the levels specification (dashed line), long-differenced specification

(dash-circle line) and the true impulse response function (solid line).
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Figure 6
Implied IRF from AR(8) Model Estimated on U.S. Real GDP

Notes: This figure shows the impulse response function implied by an AR(8) model fit to U.S. log real GDP over the sample

period 1947:Q1 - 2024:Q3.
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Figure 7
Simulation Results from Levels and Long-Differenced LP and AR(8) DGP

(T = 100)

ρ = 0.7

ρ = 0.95

ρ = 1.0

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is an AR(8) model and T = 100. Results for three alternative values of the sum of the autoregressive parameters

(ρ = {0.7, 0.95, 1.0}) are displayed. The left column shows the bias across simulations for the levels specification (dashed line)

and long-differenced specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the true

impulse response function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The

right column shows the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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Figure 8
Simulation Results from Levels and Long-Differenced LP and AR(8) DGP

(T = 200)

ρ = 0.7

ρ = 0.95

ρ = 1.0

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is an AR(8) model and T = 200. Results for three alternative values of the sum of the autoregressive parameters

(ρ = {0.7, 0.95, 1.0}) are displayed. The left column shows the bias across simulations for the levels specification (dashed line)

and long-differenced specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the true

impulse response function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The

right column shows the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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Figure 9
Simulation Results from Levels and Long-Differenced LP and UC-Model DGP

T=100

Trend-Stationary UC Model

Stochastic Trend UC Model

Common Trends UC Model

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when the

true DGP is an Unobserved Components model and the sample size T = 100. The left column shows the bias across simulations

for the levels specification (dashed line) and long-differenced specification (dash-circle line). The middle column shows the 90%

confidence interval coverage of the true impulse response function for the levels specification (dashed line) and long-differenced

specification (dash-circle line). The right column shows the ratio of the standard deviation of the long-differenced estimator to

the levels estimator.
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Figure 10
Simulation Results from Levels and Long-Differenced LP and UC-Model DGP

T=200

Trend-Stationary UC Model

Stochastic Trend UC Model

Common Trends UC Model

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when the

true DGP is an Unobserved Components model and the sample size T = 200. The left column shows the bias across simulations

for the levels specification (dashed line) and long-differenced specification (dash-circle line). The middle column shows the 90%

confidence interval coverage of the true impulse response function for the levels specification (dashed line) and long-differenced

specification (dash-circle line). The right column shows the ratio of the standard deviation of the long-differenced estimator to

the levels estimator.
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Figure 11
Simulation Results from Levels and Long-Differenced LP

and Killian and Kim (2011) VAR(1) DGP
T = 100

ϕ1
11 = 0.70

ϕ1
11 = 0.95

ϕ1
11 = 1.0

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the true

DGP is a the Kilian and Kim (2011) bivariate VAR(1) model and T = 100. Results are shown for three alternative values of

ϕ1
11 = {0.7, 0.95, 1.0}. Other parameters are set as described in Section 4.3.1. The left column shows the bias across simulations

for the levels specification (dashed line) and long-differenced specification (dash-circle line). The middle column shows the 90%

confidence interval coverage of the true impulse response function for the levels specification (dashed line) and long-differenced

specification (dash-circle line). The right column shows the ratio of the standard deviation of the long-differenced estimator to

the levels estimator.
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Figure 12
Simulation Results from Levels and Long-Differenced LP

and Killian and Kim (2011) VAR(1) DGP
T = 200

ϕ1
11 = 0.7

ϕ1
11 = 0.95

ϕ1
11 = 1.0

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the true

DGP is a the Kilian and Kim (2011) bivariate VAR(1) model and T = 200. Results are shown for three alternative values of

ϕ1
11 = {0.7, 0.95, 1.0}. Other parameters are set as described in Section 4.3.1. The left column shows the bias across simulations

for the levels specification (dashed line) and long-differenced specification (dash-circle line). The middle column shows the 90%

confidence interval coverage of the true impulse response function for the levels specification (dashed line) and long-differenced

specification (dash-circle line). The right column shows the ratio of the standard deviation of the long-differenced estimator to

the levels estimator.
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Figure 13
Simulation Results from Levels and Long-Differenced LP

and CEE VAR(4) Model (T = 100)

Real GDP Response

GDP Deflator Response

Federal Funds Rate Response

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is the 9-variable VAR(4) from Christiano et al. (2005), estimated as described in Herbst and Johannsen (2024).

The sample size is T = 100. The left column shows the bias across simulations for the levels specification (dashed line) and

long-differenced specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the true

impulse response function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The

right column shows the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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Figure 14
Simulation Results from Levels and Long-Differenced LP

and CEE VAR(4) Model (T = 200)

Real GDP Response

GDP Deflator Response

Federal Funds Rate Response

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is the 9-variable VAR(4) from Christiano et al. (2005), estimated as described in Herbst and Johannsen (2024).

The sample size is T = 200. The left column shows the bias across simulations for the levels specification (dashed line) and

long-differenced specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the true

impulse response function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The

right column shows the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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Figure 15
Simulation Results from Levels and Long-Differenced LP
and AR(8) DGP with Alternative Lag Order Selection

T = 100 and ρ = 0.95

Correct Lag Order

Lag Augmented

One Lag

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is an AR(8) model, T = 100, ρ = 0.95, and three alternative lag orders are considered. “Correct Lag Order”

indicates 8 lags in the levels specification and 8 + h lags in the long differenced specification. “Lag Augmented” indicates 9

lags in both the levels and long-differenced specification. “One Lag” indicates 1 lag in both the levels and long-differenced

specification. The left column shows the bias across simulations for the levels specification (dashed line) and long-differenced

specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the true impulse response

function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The right column shows

the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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Figure 16
Simulation Results from Levels and Long-Differenced LP

and AR(8) DGP with Alternative σ2
s/σ

2
ω

T = 100 and ρ = 0.95

σ2
s/σ

2
ω = 1

σ2
s/σ

2
ω = 0.5

σ2
s/σ

2
ω = 2

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is an AR(8) model, T = 100, ρ = 0.95, and three alternative values for σ2
s/σ

2
ω = {0.5, 1.0, 2.0} are considered.

The left column shows the bias across simulations for the levels specification (dashed line) and long-differenced specification

(dash-circle line). The middle column shows the 90% confidence interval coverage of the true impulse response function for the

levels specification (dashed line) and long-differenced specification (dash-circle line). The right column shows the ratio of the

standard deviation of the long-differenced estimator to the levels estimator.
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Figure 17
Coverage Rates from Levels and Long-Differenced LP

Based on Eicker-Huber-White Standard Errors (T = 100)

AR(8) DGP

ρ = 0.7 ρ = 0.95 ρ = 1.0

Unobserved Components Model DGPs

Trend Stationary UC Stochastic Trend UC Common Trends UC

Killian and Kim (2011) VAR(1) DGP

ϕ1
11 = 0.7 ϕ1

11 = 0.95 ϕ1
11 = 1.0

Christiano et. al (2005) VAR(4) DGP

Real GDP Response GDP Deflator Response Federal Funds Response

Notes: This figure shows the 90% confidence interval coverage of the true impulse response function for the levels specification

(dashed line) and long-differenced specification (dash-circle line) for alternative DGPs and T = 100.
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Figure 18
Coverage Rates from Levels and Long-Differenced LP

Based on Eicker-Huber-White Standard Errors (T = 200)

AR(8) DGP

ρ = 0.7 ρ = 0.95 ρ = 1.0

Unobserved Components Model DGPs

Trend Stationary UC Stochastic Trend UC Common Trends UC

Killian and Kim (2011) VAR(1) DGP

ϕ1
11 = 0.7 ϕ1

11 = 0.95 ϕ1
11 = 1.0

Christiano et. al (2005) VAR(4) DGP

Real GDP Response GDP Deflator Response Federal Funds Response

Notes: This figure shows the 90% confidence interval coverage of the true impulse response function for the levels specification

(dashed line) and long-differenced specification (dash-circle line) for alternative DGPs and T = 200.
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Figure 19
Simulation Results from Levels and Long-Differenced

LP / LP-IV and AR(8) DGP

ϕ = 0.7, T = 100 ϕ = 0.7, T = 200

ϕ = 0.95, T = 100 ϕ = 0.95, T = 200

ϕ = 1.0, T = 100 ϕ = 1.0, T = 200

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP / LP-IV

when the true DGP is an AR(8) model and the shock of interest is endogenous. Results for three alternative values of the sum

of the autoregressive parameters (ρ = {0.7, 0.95, 1.0}) and two sample sizes (T = {100, 200}) are displayed. Each figure shows

the bias across simulations for the levels LP specification (dashed line), the long-differenced LP specification (dash-circle line),

the levels LP-IV specification (dash-x line), and the long-differenced LP-IV specification (dash-square line).
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Figure 20
Impulse Response to Jarociński and Karadi (2020) Shocks

Jarociński and Karadi (2020) Monetary Policy Shock

Industrial Production Response Consumer Price Index Response

Jarociński and Karadi (2020) Federal Reserve Information Shock

Industrial Production Response Consumer Price Index Response

Notes: This figure shows the impulse response function to a one standard-deviation positive Jarociński and Karadi (2020)

monetary policy shock and federal reserve information shock. Results are shown for both 100 times the log of U.S. monthly

industrial production and the log of the U.S. consumer price index. The estimated response using the levels specification is the

dashed line, while the estimated response using the long-differenced specification is the dash-circle line. The lightest shade of

gray indicates areas of the parameter space included only in the levels specification 90% confidence interval, the medium shade

indicates areas included only in the long-differenced specification 90% confidence interval, and the darkest shade indicates areas

included in the confidence interval for both specifications. The sample period extends from Feb. 1990 through December 2019.
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Appendix A

This appendix provides additional detail behind the derivation of equations (10), (12)

and (13). Consider the AR(1) data generating process where st represents an observed,

exogenous, shock of interest:

yt = α + β0st + ϕyt−1 + ωt

We assume that ωt is i.i.d.(0, σ2
ω), st is i.i.d.(µs, σ

2
s), and E (stωt+j) = 0, ∀ j. Without loss

of generality we set µs = 0. The correctly specified levels LP for the AR(1) case is:

yt+h = cLh + βhst + ρhyt−1 + vt+h

where vt+h =
h−1∑
i=0

βist+h−i +
h∑

i=0

ϕiωt+h−i

Consider the expected value of the sample covariance between st and vt+h computed over

the time period {t = 1, 2, . . . , T + h}:

E(covst,vt+h
) = E

(
1

T

T∑
t=1

(st − s̄[0])(vt+h − v̄[h])

)

where for a random variable ξ, ξ̄[τ ] =
1
T

T+τ∑
t=1+τ

ξt. In this notation, τ reflects the offset of the

sample period from 1 → T used to compute a sample mean. Expanding and noting that

E (stvt+h) = 0 we have:

E(covst,vt+h
) = −E

(
s̄[0]v̄[h]

)
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From the definition of vt+h:

−E
(
s̄[0]v̄[h]

)
= −

h−1∑
i=0

βiE
(
s̄[0]s̄[h−i]

)
−

h∑
i=0

ϕiE
(
s̄[0]ω̄[h−i]

)
There are T − |h− i| overlapping values of st used in the calculation of s̄[0] and s̄[h−i]. Given

this, and recognizing that h ≥ i in the equations above, it follows that:

E
(
s̄[0]s̄[h−i]

)
=

σ2
s

T 2
(T − h+ i)

Also, from the exogeneity of st:

E
(
s̄[0]ω̄[h−i]

)
= 0

Combining gives us equation (10):

E(covst,vt+h
) =

σ2
s

T 2

[
−

h−1∑
i=0

βi (T − h+ i)

]

Turning to the long-differenced LP, the correctly specified LP for the AR(1) DGP is:

∆hyt+h = cDh + βhst + θ1,h∆yt−1 + · · ·+ θh+1,h∆yt−h−1 + ut+h

where βh = β0ϕ
h, θi,h = ϕh+1 and:

ut+h =
h−1∑
i=0

βi(st+h−i − st−1−i)− βhst−h−1 +
h∑

i=0

ϕi(ωt+h−i − ωt−1−i)

Consider the expected value of the sample covariance between st and ut+h computed over

the time period {−h,−h+ 1, . . . , 0, 1, . . . , T + h}:

E(covst,ut+h
) = E

(
1

T

T∑
t=1

(st − s̄[0])(ut+h − ū[h])

)

58



Using similar calculations as for the levels case we have:

E(covst,ut+h
) = −E

(
s̄[0]ū[h]

)
From the definition of ut+h:

−E
(
s̄[0]ū[h]

)
= −

h−1∑
i=0

βiE
(
s̄[0]
(
s̄[h−i] − s̄[−(i+1)]

))
+ βhE

(
s̄[0]s̄[−(h+1)]

)
−

h∑
i=0

ϕiE
(
s̄[0]
(
ω̄[h−i] − ω̄[−(i+1)]

))
There are T − |τ | overlapping values of st used in the calculation of s̄[0] and s̄[τ ]. Given this,

and noting that h ≥ 0, i ≥ 0, and h ≥ i, we have:

E
(
s̄[0]
(
s̄[h−i] − s̄[−(i+1)]

))
=

σ2
s

T 2
(T − h+ i)− σ2

s

T 2
(T − i− 1)

=
σ2
s

T 2
(1− h+ 2i)

and:

E
(
s̄[0]s̄[−(h+1)]

)
=

σ2
s

T 2
(T − h− 1)

Finally, from the exogeneity of st:

E
(
s̄[0]
(
ω̄[h−i] − ω̄[−(i+1)]

))
= 0

Substituting and rearranging we have equation (12):

E(covst,ut+h
) =

σ2
s

T 2

[
βh (T − h− 1)−

h−1∑
i=0

βi (1− h+ 2i)

]

We now turn to the instrumental variables (LP-IV) case. We again assume the AR(1) data

generating process, but now assume that St is an observed endogenous variable of interest,
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such that E (stωt) ̸= 0. The instrument εt ∼ i.i.d. (0, σ2
ε) is such that E (εtωt+j) = 0, ∀ j,

and has first-stage regression:

st = λ+ γεt + ηt,

where E (εtηt) = 0 and we assume λ = 0 without loss of generality. Assuming γ is known,

the correctly specified LP-IV in levels is:

yt+h = cLh + βhŝt + ρ1,hyt−1 + vIVt+h

where ŝt = γεt and vIVt+h = vt+h+βhηt. Consider the expected value of the sample covariance

between ŝt and vIVt+h computed over the time period {t = 1, 2, . . . , T + h}:

E(covŝt,vIVt+h
) = E

(
1

T

T∑
t=1

(ŝt − ¯̂s[0])(v
IV
t+h − v̄IV[h] )

)

Expanding and noting that E
(
ŝtv

IV
t+h

)
= 0 we have:

E(covŝt,vIVt+h
) = −E

(
¯̂s[0]v̄

IV
[h]

)
From the definition of vIVt+h:

−E
(
¯̂s[0]v̄

IV
[h]

)
= −

h−1∑
i=0

βiE
(
¯̂s[0]s̄[h−i]

)
−

h∑
i=0

ϕiE
(
¯̂s[0]ω̄[h−i]

)
There are T −|h− i| overlapping values of γεt used in the calculation of ¯̂s[0] and s̄[h−i]. Given

this, and recognizing that h ≥ i in the equations above, it follows that:

E
(
¯̂s[0]s̄[h−i]

)
=

γ2σ2
ε

T 2
(T − h+ i)

Also, from the exogeneity of εt:

E
(
¯̂s[0]ω̄[h−i]

)
= 0
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Combining gives us the first proportionality result in equation (13):

E(covŝt,vIVt+h
) =

γ2σ2
ε

T 2

[
−

h−1∑
i=0

βi (T − h+ i)

]

= κE(covst,vt+h
)

where:

κ =
γ2σ2

ε

σ2
s

The correctly specified LP-IV in long differences is:

∆hyt+h = cDh + βhŝt + θ1,h∆yt−1 + · · ·+ θh+1,h∆yt−h−1 + uIV
t+h

where βh = β0ϕ
h, θi,h = ϕh+1 and uIV

t+h = ut+h + βhηt. Using similar arguments as above it

can be shown that:

E(covŝt,uIV
t+h

) =
γ2σ2

ε

T 2

[
βh (T − h− 1)−

h−1∑
i=0

βi (1− h+ 2i)

]

= κE(covst,ut+h
)

which provides the second proportionality result in (13).
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Appendix B

This appendix generalizes the analytical results in Appendix A to the case of a VAR(p).

Suppose the N × 1 vector of endogenous variables Yt = (y1,t, y2,t, . . . , yN,t)
′ follows a VAR(p)

process, where St = (s1,t, s2,t, . . . , sN,t)
′ represents an N × 1 vector of exogenous shocks:

Yt = C +B0St + Φ1Yt−1 + Φ2Yt−1 + · · ·+ ΦpYt−p +Wt.

In this notation, Wt = (w1,t, w2,t, . . . , wN,t)
′ represents an N × 1 vector of disturbances that

are assumed i.i.d. (0N ,ΣW ), where 0N represents an N × 1 vector of zeros. The vector of

exogenous shocks, St, is i.i.d. (µS,ΣS), with E
(
StW

′
t+j

)
= 0,∀j. Without loss of generality

we set µS = 0. We further assume that the exogenous shocks are orthogonal, such that

E (sa,tsb,t) = 0, ∀ a ̸= b. This implies that ΣS = diag
(
σ2
s,1, σ

2
s,2, . . . , σ

2
s,N

)
. Finally, B0 is an

N ×N matrix of initial responses to the exogenous shocks, while the Φi are N ×N matrices

of lag parameters.

Cast this VAR in companion form as:

Ỹt = C̃ +BS̃t + FỸt−1 + W̃t, (B-1)

where Ỹt =
(
Y ′
t , Y

′
t−1, . . . , Y

′
t−p+1

)′
, S̃t =

(
S ′
t, 0

′
(N∗(p−1))

)′
, and W̃t =

(
W ′

t , 0
′
(N∗(p−1))

)′
. The

matrix B is Np×Np:

B =



B0 0N . . . 0N

0N 0N . . . 0N
...

...
. . .

...

0N 0N . . . 0N


,

and the matrix F is the standard Np×Np companion matrix:
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F =



Φ1 Φ2 . . . Φp − 1 Φp

IN 0N . . . 0N 0N

0N IN
. . .

... 0

...
. . . . . . 0N

...

0N . . . 0N IN 0N


.

In the following discussion, F a
b,c indicates the (b, c) element of F a.

Suppose that we observe the dth structural shock (sd,t), and we are interested in estimating

the horizon h response of the kth endogenous variable yk,t+h to sdt. By iterating Equation

(B-1) forward, and identifying the kth row, we arrive at the correct specification of the levels

LP:

yk,t+h = cLk,h + βh,k,dsd,t +

p∑
j=1

(
N∑

n=1

F h+1
k,(n+N(j−1))yn,t−j

)
+ vk,t+h

where βh,k,d is the (k, d) element of F hB. Also:

vk,t+h =
h−1∑
i=0

(
N∑

n=1

βi,k,nsn,t+h−i

)
+

h∑
i=0

(
N∑

n=1

F i
k,nwn,t+h−i

)
+
∑
n̸=d

βh,k,nsn,t

Consider the expected value of the sample covariance between sd,t and vk,t+h computed

over the time period {t = 1, 2, . . . , T + h}:

E(covsd,t,vk,t+h
) = E

(
1

T

T∑
t=1

(
sd,t − s̄d,[0]

) (
vk,t+h − v̄k,[h]

))

where the notation ξ̄[τ ] is defined in Appendix A. Given the assumptions made on the stochas-

tic components above, it is straightforward to see that E (sd,tvk,t+h) = 0. It follows that:

E(covsd,t,vk,t+h
) = −E

(
s̄d,[0]v̄k,[h]

)
Given the orthogonality of the exogenous shocks, it is apparent that E

(
s̄d,[0]s̄j,[0]

)
= 0, ∀ j ̸=

d, while the exogeneity of sd,t implies that E
(
s̄d,[0]w̄j,[h−i]

)
= 0, ∀ j. With these two results,
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and from the definition of vk,t+h, we have:

−E
(
s̄d,[0]v̄k,[h]

)
= −

h−1∑
i=0

βi,k,dE
(
s̄d,[0]s̄d,[h−i]

)
There are T − |h − i| overlapping values of st used in the calculation of s̄d,[0] and s̄d,[h−i].

Given this, and recognizing that h ≥ i in the equations above, it follows that:

E
(
s̄d,[0]s̄d,[h−i]

)
=
σ2
s,d

T 2
(T − h+ i)

Combining gives us the analogous result as for the AR(1) case in equation 10:

E(covsd,t,vk,t+h
) =

σ2
s,d

T 2

[
−

h−1∑
i=0

βi,k,d (T − h+ i)

]
(B-2)

Equation (B-2) demonstrates very similar features to the expected covariance for the

AR(1) case. Specifically, the size of the expected covariance between sd,t and vk,t+h depends

on the value of βi,k,d for i = 0, . . . h − 1. That is, the expected covariance depends on the

value of the true IRF for the response of yk,t+i to sd,t at all horizons up to h − 1. Notably,

the expected covariance does not depend on dynamic multipliers for other shocks. Second,

for IRFs where the dynamic multipliers have the same sign, the expected covariance will

grow in absolute value with the horizon h. Third, the sample size influences the size of the

expected covariance. As T grows, the denominator grows with respect to the numerator and

shrinks the size of the covariance.

Turning to the long-differenced LP, the correctly specified LP for the VAR(p) DGP is:

∆hyk,t+h = cDk,h + βh,k,dsd,t +

p+h∑
j=1

(
N∑

n=1

ψh,j,k,n∆yn,t−j

)
+ uk,t+h
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where:

uk,t+h =
h−1∑
i=0

(
N∑

n=1

βi,k,n(sn,t+h−i − sn,t−1−i)

)
− βh,k,dsd,t−h−1

+
h∑

i=0

(
N∑

n=1

F i
k,n (wn,t+h−i − wn,t−1−i)

)
+
∑
n̸=d

βh,k,n (sn,t − sn,t−h−1)

Consider the expected value of the sample covariance between sd,t and uk,t+h computed over

the time period {−h,−h+ 1, . . . , 0, 1, . . . , T + h}:

E(covsd,t,uk,t+h
) = E

(
1

T

T∑
t=1

(
sd,t − s̄d,[0]

) (
uk,t+h − ūk,[h]

))

Again, given the assumptions above, it is straightforward to see that:

E(covsd,t,uk,t+h
) = −E

(
s̄d,[0]ūk,[h]

)
Then, using the orthogonality of the exogenous shocks and exogeneity of sd,t, as well as the

definition of uk,t+h, we have

−E
(
s̄d,[0]ūk,[h]

)
= −

h−1∑
i=0

βi,k,dE
(
s̄d,[0]

(
s̄d,[h−i] − s̄d,[−(i+1)]

))
+ βh,k,dE

(
s̄d,[0]s̄d,[−(h+1)]

)
There are T − |τ | overlapping values of sd,t used in the calculation of s̄d,[0] and s̄d,[τ ]. Given

this, and noting that h ≥ 0, i ≥ 0, and h ≥ i, we have:

E
(
s̄d,[0]

(
s̄d,[h−i] − s̄d,[−(i+1)]

))
=
σ2
s,d

T 2
(T − h+ i)−

σ2
s,d

T 2
(T − i− 1)

=
σ2
s,d

T 2
(1− h+ 2i)

and:

E
(
s̄[0]s̄[−(h+1)]

)
=
σ2
s

T 2
(T − h− 1)
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Substituting and rearranging we have:

E(covsd,t,uk,t+h
) =

σ2
s,d

T 2

[
βh,k,d (T − h− 1)−

h−1∑
i=0

βi,k,d (1− h+ 2i)

]
(B-3)

The expected covariance in Equation (B-3) is very similar to the analogous Equation (12)

for the AR(1) case. Further, using similar arguments to those in Section 3, we can see that

the expected covariance in Equation (B-3) will in general be much smaller than the expected

covariance in Equation (B-2).
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Appendix C

This appendix presents additional simulation results for alternative sample sizes and

measures of persistence.
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Figure C-1
Simulation Results from Levels and Long-Differenced LP and AR(8) DGP

(T = 300)

ϕ = 0.7

ϕ = 0.95

ϕ = 1.0

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is an AR(8) model and T = 300. Results for three alternative values of the sum of the autoregressive parameters

(ρ = {0.7, 0.95, 1.0}) are displayed. The left column shows the bias across simulations for the levels specification (dashed line)

and long-differenced specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the true

impulse response function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The

right column shows the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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Figure C-2
Simulation Results from Levels and Long-Differenced LP and AR(8) DGP

(ρ = 0.5)

T = 100

T = 200

T = 300

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is an AR(8) model and ρ = 0.5. Results for three alternative sample sizes (T = {100, 200, 300}) are displayed.

The left column shows the bias across simulations for the levels specification (dashed line) and long-differenced specification

(dash-circle line). The middle column shows the 90% confidence interval coverage of the true impulse response function for the

levels specification (dashed line) and long-differenced specification (dash-circle line). The right column shows the ratio of the

standard deviation of the long-differenced estimator to the levels estimator.
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Figure C-3
Simulation Results from Levels and Long-Differenced LP and UC-Model DGP

T = 300

Trend-Stationary UC Model

Stochastic Trend UC Model

Common Trends UC Model

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when the

true DGP is an Unobserved Components model and T = 300. The left column shows the bias across simulations for the levels

specification (dashed line) and long-differenced specification (dash-circle line). The middle column shows the 90% confidence

interval coverage of the true impulse response function for the levels specification (dashed line) and long-differenced specification

(dash-circle line). The right column shows the ratio of the standard deviation of the long-differenced estimator to the levels

estimator.
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Figure C-4
Simulation Results from Levels and Long-Differenced LP

and Killian and Kim (2011) VAR(1) DGP
ϕ1
11 = 0.50

T = 100

T = 200

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the

true DGP is the Killian and Kim(2011) bivariate VAR(1) model, T = {100, 200} and ϕ1
11 = 0.50. Other parameters are set

as described in Section 4.3. The left column shows the bias across simulations for the levels specification (dashed line) and

long-differenced specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the true

impulse response function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The

right column shows the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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Figure C-5
Simulation Results from Levels and Long-Differenced LP

and Killian and Kim (2011) VAR(1) DGP
T = 300

ϕ1
11 = 0.5

ϕ1
11 = 0.7

ϕ1
11 = 0.95

ϕ1
11 = 1.0

Notes: This figure displays simulation results from estimation of the levels and differences specification of the LP when the

true DGP is the Killian and Kim(2011) bivariate VAR(1) model and T = 300, and ϕ1
11 = {0.5, 0.7.0.95, 1.0}. Other parameters

are set as described in Section 4.3. The left column shows the bias across simulations for the levels specification (dashed line)

and long-differenced specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the true

impulse response function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The

right column shows the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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Figure C-6
Simulation Results from Levels and Long-Differenced LP

and CEE VAR(4) Model (T = 300)

Real GDP Response

GDP Deflator Response

Federal Funds Rate Response

Notes: This figure displays simulation results from estimation of the levels and long-differenced specification of the LP when

the true DGP is the 9-variable VAR(4) from Christiano et al. (2005), implemented as described in Herbst and Johannsen

(2024). The sample size is T = 300. The left column shows the bias across simulations for the levels specification (dashed

line) and long-differenced specification (dash-circle line). The middle column shows the 90% confidence interval coverage of the

true impulse response function for the levels specification (dashed line) and long-differenced specification (dash-circle line). The

right column shows the ratio of the standard deviation of the long-differenced estimator to the levels estimator.
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