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1. Introduction 

Regression models with parameters that undergo structural change have become a 

staple of the applied time-series econometrician’s toolkit.  One reason for the popularity 

of such models is the substantial evidence for parameter instability in regressions 

involving key economic variables, particularly macroeconomic and financial variables, 

measured over the post-war sample period.  For example, there is overwhelming evidence 

of parameter breaks in autoregressive models of U.S. real output, particularly in the 

residual variance parameter (Kim and Nelson, 1999 and McConnell and Perez-Quiros, 

2000).  Likewise, Garcia and Perron (1996), Rapach and Wohar (2005) and Levin and 

Piger (2002) find important shifts in the intercept parameter of autoregressive models for 

interest rates and inflation in G7 countries.  Indeed, Stock and Watson (1996) document 

instability in the parameters of a univariate autoregression for a “significant fraction” of 

the 76 U.S. macroeconomic time-series they study over the post-war period. 

In many cases, the nature of structural breaks, in terms of their number and timing, is 

not known ex-ante, and a large literature has emerged focusing on testing for the 

existence of structural breaks, where the date of the potential structural break is unknown.  

For example, Andrews (1993), Andrews and Ploberger (1994) and Diebold and 

Chen (1996) develop tests of a model with no structural breaks against the alternative of a 

model with a single structural break.  Bai and Perron (1998) and Bai (1999) develop 

sequential testing procedures designed to reveal the number of, perhaps multiple, 

structural breaks.  Wang and Zivot (2000) discuss Bayesian estimation of a time-series 

model with multiple structural breaks, as well as present approaches, based on Bayesian 

model comparison, to determine the number of structural breaks.  
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In developing these approaches to determine the number of structural breaks, the 

literature has taken the subset of parameters that change at each break date as given.  That 

is, there has been little attention paid to the model selection question of which parameters 

change at each break date.  This is a significant omission, as there are reasons to believe 

that it may be important to conduct model selection jointly over the number of structural 

breaks and the parameters that change at each break date.  Perhaps most importantly, 

evidence for a break may be revealed only if the subset of parameters that undergo 

structural breaks is correctly specified.  For example, in evaluating the evidence for 

parameter breaks, suppose the researcher has no a priori knowledge of which parameters 

are likely to have undergone breaks, and thus allows all parameters to change at each 

break date, a common practice in testing for structural breaks.  Such a procedure is likely 

to have low power to identify structural breaks if only a small subset of the parameter 

vector actually changes.  Further, even if one is able to accurately determine the number 

of structural breaks, interpreting the economic meaning of the breaks may be aided by 

identifying which parameters break at each break point.  For example, in time series 

models of macroeconomic variables, the economic interpretation of changes in the 

persistence of the series is often quite different from the economic interpretation of 

changes in the residual variance.   

It is not difficult to find examples of regression models where careful attention to 

establishing the subset of the parameter vector that undergoes parameter change might 

yield important dividends.  For example, a lively debate has emerged on the existence of 

shifts in conditional mean parameters of key equations for models of the U.S. 

macroeconomy, such as the Phillips Curve and the Federal Reserve’s “reaction function”.  
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On the one hand, Clarida, Gali and Gertler (2000), Cogley and Sargent (2001, 2005), and 

Boivin (1999) find important within-sample variation in their estimates of key 

conditional mean parameters.  However, Sims (1999, 2001) and Sims and Zha (2006) 

argue that allowing for such changes does not provide a statistically superior fit over 

models with constant conditional mean parameters and structural change in covariance 

matrix parameters.  Given the potentially large number of conditional mean parameters 

that may change in such models, the results could be quite sensitive to whether all 

conditional mean parameters are allowed to change, or only a subset.  Indeed, 

Boivin (1999) notes that a key reason for discrepancies in statistical evidence for 

structural change observed in this literature is the differing number of parameters that are 

allowed to break in alternative model specifications.  

In this paper we take a Bayesian approach to model selection in regression models 

with structural breaks in conditional mean and residual variance parameters.  An 

important element of our approach is that it does not condition on the parameter subset 

that undergoes structural breaks, but instead conducts model selection jointly over the 

number of structural breaks and the subset of the parameter vector that changes at each 

break date.  Specifically, we proceed by computing and comparing posterior model 

probabilities, where the space of potential models is expanded to include models that 

differ not just by the number of structural breaks, but also by which elements of the 

parameter vector are fixed and which elements change across individual break dates. 

The Bayesian approach is well suited for the model selection problem studied in this 

paper, as this problem involves the comparison of non-nested models.  For example, one 

may be interested in comparing a model in which there are two structural breaks, one in 
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the intercept parameter and one in the residual variance parameter, against a model in 

which there are two breaks in the residual variance parameter.  The Bayesian approach 

proceeds by comparing posterior probabilities for various competing models, an approach 

for which non-nested models create no special considerations.  Bayesian model selection 

for the number of structural breaks was developed and discussed by Wang and 

Zivot (2000).1  Here we extend the Wang and Zivot framework to allow for model 

selection that encompasses the subset of parameters that undergoes structural breaks.  

To evaluate the performance of our proposed model selection procedure, we conduct 

a series of simulation experiments in which we generate artificial data from regression 

models with varying numbers of structural breaks, and the structural breaks occur in a 

subset of the parameter vector.  The results of these experiments suggest there are 

potentially sizeable gains to conducting model selection over the subset of parameters 

that undergo breaks rather than simply allowing all parameters to change.  In particular, 

the likelihood of selecting the model with the correct number of structural breaks is 

substantially enhanced when model selection is expanded to include the subset of 

parameters that undergo breaks.  Further, the simulation experiments suggest that the 

proposed Bayesian approach is relatively successful at identifying the correct subset of 

parameters that undergo change. 

Finally, we apply our model selection approach to characterize possible structural 

breaks in conditional mean and residual variance parameters in an autoregression for the 

U.S. inflation rate.  There is substantial ongoing debate about the existence of such 

breaks, with Cogley and Sargent (2001, 2005) arguing that the inflation process has 

                                                 
1 Summers (2004) uses the Wang and Zivot (2000) methodology to model structural breaks in OECD 
unemployment rates. 
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undergone important changes in these conditional mean parameters, including the 

persistence of the process, while other authors, such as Stock (2001) and Pivetta and 

Reis (2007) argue that, while there is strong evidence of changes in residual variance 

parameters, changes in conditional mean parameters are much less obvious.  Our results 

reveal several insights that contribute to this literature.  First of all, the Bayesian model-

selection procedures suggest there have been substantial changes in both conditional 

mean and residual variance parameters.  Second, and importantly, the evidence for 

conditional mean parameters is revealed only when one conducts model selection over 

the subset of conditional mean parameters that undergo breaks, a result that demonstrates 

the empirical relevance of our proposed model selection procedure.  Finally, the results 

suggest that evidence for intercept parameter shifts is substantial, but evidence for shifts 

in the persistence of the process is less so.  Indeed, estimates of inflation persistence 

obtained by Bayesian model averaging of the various models under consideration 

suggests that inflation persistence has been roughly constant over the sample, albeit at a 

substantially lower level than estimates obtained assuming a constant parameter 

autoregression. 

Section 2 lays out the empirical model of interest and describes the Bayesian 

approach to model selection.  Section 3 details the results of simulation experiments 

designed to evaluate the performance of the Bayesian techniques.  Section 4 presents an 

application of the Bayesian model selection procedures to modeling U.S. inflation rates.  

Section 5 concludes and offers some directions for future research.  
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2. Model Specification, Bayesian Estimation, and Model Selection 

2.1 Model Specification 

Consider the following time-series regression with  structural breaks: m
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where  is a scalar dependent variable observed at time t, ty ( )',,2,1 ,...,, tkttt xxxx =  is a 

 vector of exogenous or predetermined covariates, )1( ×k ( )'21 ,...,, i
k

iii ββββ =  is a )1( ×k  

vector of coefficients, 1,...,1 += mi , and )1,0(...~ Ndiitε .  The initial and final break 

dates, 0τ  and 1+mτ  are equal to 0 and T respectively.  The m remaining break dates are 

assumed unknown and treated as additional parameters to be estimated. 

The model in (1) can be cast in matrix notation as follows.  Define  as the 

 matrix whose (  element is equal to one if 

mD

(( 1+× mT )) )it, ii t ττ ≤<−1  and zero 

otherwise.  In other words,  is a matrix whose imD th column is a dummy variable 

indicating those time periods that are included in the regime beginning at 11 +−iτ  and 

ending at iτ .  Collect the conditional mean and residual variance parameters into the 

vectors  and ( )'11
2

2
2

1
2

1
1

2
1

1
1 ,....,,...,,,,...,, +++= m

k
mm ββββββββ ( )'121 ,...,, += mσσσσ .  
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Finally, define ( )'
21 ,...,,~

Tyyyy = , ( )',2,1, ,...,,~
Tjjjj xxxx = , kj ,...,1= , and σmDs =~ .  We 

can then write equation (1) as: 

 
 uXy ~~ += β , (2) 

 
where [ ]kmmm xDxDxDX ~ ~ ~ ( (( ) ))kmT *1.. •21 ••=  is a +×  matrix with •  

indicating element by element multiplication, and  )~,0(~~ sINu TT • . 

We want to consider models where not all parameters are allowed to change across 

each break date.  Define the matrix , 
j

Rβ kj ,...,1= , as the ( )( )
j

qm β×+1   matrix that, 

through post-multiplication of , sums the imD th  and i+1th columns of  if , 

with  defined analogously.  For example, for a model with constant residual variance 

parameter, the matrix  is simply an 

mD 1+= i
j

i
j ββ

σR

σR ( )( )11 ×+m  matrix of ones.  Alternatively, for a 

model with residual variance parameter that is allowed to change across all  break 

dates,  is the (  identity matrix.  In this notation,  and  denote the number 

of regimes over which the coefficient on 

1+m

σR )1+m
j

qβ σq

jx~  and the residual variance parameter are 

allowed to take on different values respectively.  Thus, the total number of unique 

conditional mean parameters is  and the total number of unique residual variance 

parameters is .  Note that  and  matrices that restrict all parameters to be equal 

across any particular break date, that is that restrict 

∑
=

k

j
j

q
1

β

σq
j

Rβ σR

( ) ( )'11' ,, ++= iiii σβσβ , are 

inadmissible, as these restrictions imply that the number of structural breaks is not m, but 

m-1. 
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Define the vector Rβ  as the matrix β  reduced to contain only the ∑  unique 

elements of 

=

k

j
j

q
1

β

β , and Rσ  as the vector σ  reduced to contain only the  unique elements 

of 

σq

σ .  The model in (2) can then be rewritten to incorporate cross-regime parameter 

equality restrictions as follows: 

 
 RRR uXy ~~ += β , (3) 

 
where ( ) ( ) ( )[ ]kmmmR xRDxRDxRDX

k

~..~~
21 21

•••= βββ , and )~,0(~~
RTTR sINu •  with 

( ) RmR RDs σσ=~ . 

 
2.2 Prior Specification 

In this paper we focus on Bayesian estimation of the model in (3).  We begin with 

specification of prior density functions for the model parameters, conditional on values 

for m and { }σββ RRRR
k
,,...,

1
= .  Partition the parameters into three blocks, given by Rβ , 

Rσ , and .  We assume prior independence of ( '
21 ,....,, mττττ = ) Rβ , Rσ , and τ , as well 

as prior independence of the elements of Rσ .  The joint prior is then given by: 

 

 . (4) ( ) ∏
=

=
σ

στβστβ
q

i

i
RRR ffff

1

)()()(,,

 
We specify proper priors for each parameter block.  We define ( )Rf β  as a 

multivariate Gaussian random variable with mean vector  and variance-covariance 

matrix Σ .  For each , , we specify 

C

iσ σqi ,...,1= ( )if σ  as an inverted gamma density 

function with parameters ν  and δ .  Finally, our prior for τ  is a uniform distribution 
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over the space of allowable break dates.  A set of break dates is allowable if they meet the 

following set of restrictions: 

 
 ( ) jibji >∀≥−   ,ττ , (5) 

 
where .  The constraint (5) requires that a regime have minimum length b.   1≥b

 
2.3 Bayesian Estimation via the Gibbs Sampler 

For given values of m and R, and the prior density functions defined above, Bayesian 

estimation of the model in (3) can proceed via the Gibbs Sampler (Gelfand and Smith, 

1990).  The Gibbs sampler for a time-series regression model with multiple structural 

breaks is described in Wang and Zivot (2000).2  We follow closely the Wang and 

Zivot (2000) algorithm, modified to allow for subsets of parameters that break across 

some, but not all, break dates.  The details of this algorithm are presented in the appendix.  

 
2.4 Model Selection 

In practice, the number of breaks, m, as well as the subsets of parameters that change 

across each break date, defined by R, are unknown.  In the following, a model is 

determined by values of m and R, and is denoted as .  The problem of choosing 

m and R is then cast in terms of model comparisons across alternative . 

),( RmM

( )RmM ,

The standard Bayesian approach to model comparison is to compute posterior 

probabilities of alternative models.  In particular, the posterior probability of  is 

given by: 

),( RmM

 

                                                 
2 See also Stephens (1994). 
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 ( ) ( ) ( )
)~(

),(),(|~~|),(
yf

RmMPRmMyfyRmMP = . (6) 

 
In (6),  is the researcher’s prior probability on (( RmMP , )) ( )RmM , , while 

(( RmMyf ,| ))~  is the marginal likelihood, or likelihood function integrated free of model 

parameters.  Finally, )~(yf  is an integrating constant that can be recovered, given 

 and (( )RmMP , ) ))(( RmMyf ,|~ , from the constraint that ( )( )∑∑ =
m R

yRmMP 1~|, .  

Obtaining ( )( yRmMP )~|,  requires knowledge of ( )( )RmMyf ,|~  and .  

To obtain the marginal likelihood, we use the approach of Chib (1995), which provides a 

simulation consistent estimate of 

( )( )RmMP ,

( )( )RmMyf ,|~  based on the output of full and reduced 

runs of the Gibbs sampler described in Section 2.3.  We have considered alternative 

approaches to estimating ( )( RmMyf ,| )~ , such as those based on importance sampling, 

and have found that the approach of Chib (1995) performed best in the simulation 

evidence presented in Section 3. 

To specify the prior model probability, we use a flat prior over the number of 

structural breaks up to a pre-specified maximum, denoted , as well as a flat prior over 

the different permutations of R considered for a given value of m, denoted by .  That 

is: 

*m

mN

 

 ( )
mNm

RmMP 1*
1

1),( * +
= . (7) 
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The first term in (7) divides the probability space equally among the  potential 

break models, , while the second term divides the probability space for a 

given m equally among the  potential models. 

1* +m

*,...1,0 mm =

mN

Given ( )( yRmMP )~|, , selection of m and R proceeds in two steps.  In the first step, 

we choose the number of structural breaks as the value of m that solves: 

 

 . (8) ( )( ) ( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

== Rmmmm
yRmMPymMP ~|),(max~|)(max

),..,1,0(),..,1,0( **
)

 
Given a choice for m, denoted m~ , in the second step we choose R as that value of R that 

solves: 

 
 ( )yRmMP

R

~|),~(max
)(

. (9) 

 
An alternative, commonly used approach to model selection is based on information 

criteria such as the Schwarz Information Criterion (SIC).  The SIC was shown to be a 

consistent criterion for selecting the number of structural breaks in a linear regression 

with exogenous regressors by Liu et al. (1997), and was shown to perform well at 

selecting the number of structural breaks in dynamic models by Wang and Zivot (2000).  

Here we will also consider model selection based on the SIC.  In particular, the SIC for 

, denoted , is given by: ),( RmM ( RmSIC , )

 

 , (10) ( ) ( )TqqmyLRmSIC
k

j
RR j

ln~|ˆ,ˆ,ˆln2),(
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−= ∑

=
βστσβ
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where hats indicate the maximum likelihood estimates.  Due to the substantial 

computational burden involved with obtaining maximum likelihood estimates for certain 

structural beak models, we follow Wang and Zivot (2000) and instead evaluate (10) at the 

median of the posterior distribution for each parameter.  A value for m and R is then 

chosen as the solution to the following problem: 

 
 ( )yRmMSIC

Rmm

~|),(min
);,..,1,0( *=

. (11) 

 
2.5 Model Averaging 

 In many cases, the objective is not to select a particular ( )RmM ,  from the set of 

possible structural break models, but instead to draw inference on a particular subset of 

the parameter space that has a common interpretation across models with different m and 

R.  A distinct advantage of the Bayesian approach is that it allows the researcher to obtain 

a posterior distribution for this subset of parameters of interest, without conditioning on a 

particular model. 

Specifically, suppose one is interested in a subset of the parameter space, denoted .  

The posterior density for , conditional on only the observed data, is given as: 

*θ

*θ

 
 ( )( ) ( )( )yRmMPyRmMfyp

m R

~|,*~,,|)~|( ** ∑∑= θθ , (12) 

 
where ( )( )yRmMf ~,,|*θ  is the posterior density of  conditional on a particular model, 

and can be sampled using the Gibbs Sampler as described in section 2.3, while 

*θ

( )( yRmMP )~|,  is the posterior model probability computed as in section 2.4.  

Operationally, a draw is obtained from )~|( * yp θ by obtaining a draw from 
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( )( )yRmMf ~,,|*θ  for all m and R, and then forming a weighted average of these draws, 

where the weights are given by ( )( )yRmMP ~|, . 

 
2.6 Dimensionality of the Model Space 

A practical problem with the model selection procedure outlined above is the 

proliferating dimensionality of the model space.  For example, consider a simple AR(1) 

model with three parameters, namely an intercept, an autoregressive parameter, and the 

residual variance parameter.  These parameters yield seven potential combinations of 

parameters that can go undergo a structural break at any particular break point.  If the 

model is allowed to have m breaks, and one wants to compare all possible combinations 

of parameter change for this m break model, we have  potential models to 

consider.  The model space increases even further if we compare across alternative values 

of m. 

m
mN 7=

That being said, given modern computing speeds, it is quite feasible to conduct model 

selection over all potential models for moderately parameterized regressions, such as 

univariate autoregressions, and for moderate numbers of breaks.  Second, for more highly 

parameterized models, such as a vector autoregression, model selection might be 

conducted over parameter blocks, which would reduce the dimensionality of the model 

space considerably.  Finally, although considering a large number of potential models has 

a measurable cost, the benefit might also be substantial.  Indeed, we will demonstrate in 

the following sections that basing inference regarding structural breaks on a model with 

breaks in all parameters can lead to very misleading results, even for models with a small 

numbers of parameters. 
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3. Simulation Evidence 

In this section we describe results from simulation experiments conducted to evaluate 

the performance of the model selection procedures detailed above.  For each simulation 

experiment, we generate artificial time series from a data generating process that is a 

member of the following class of models: 
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                   , Tt ,....,1=

where )1,0( ..~ Ndiitε ,  is scalar and follows a first-order autoregressive process with 

standard normal innovations and autoregressive parameter 

tx

ρ , and the sample size is T = 

200.  The alternative data generating processes considered differ according to the number 

of structural breaks, the subset of the parameter vector that is allowed to break at each 

break point, the size of the structural breaks, and the autoregressive parameter ρ .  For 

each simulated time series, we then select a particular model from (13), where model 

selection is conducted over all possible variations for , ,  and .  The 

maximum number of structural breaks considered for model selection is =2, yielding a 

total of 57 models to compare for each generated time series, one corresponding to the 

 case, seven corresponding to the 

m
0β

R
1β

R σR

*m

0=m 1=m  case, and 49 corresponding to the  

case.  For each , we compute the posterior probability of the model, 

, as well as the SIC, 

2=m

( RmM , )

))(( RmMP , ( )( )RmMSIC , , and select a model as described in 

Section 2.4. 
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As a means of comparison, we also consider the ability of procedures that do not 

conduct model selection over R to select the correct number of structural breaks.  For 

these procedures, only three potential models are compared, one for each value of m 

under consideration.  The model for each m sets ,  and  equal to the  

identify matrix, thus allowing each of 

0β
R

1β
R σR 1+m

0β , 1β  and σ  to break at each of the m break 

dates.  For the posterior odds based procedure, a value for m is chosen as the m that yields 

the highest posterior model probability, where we again specify a uniform prior over m.  

For the SIC procedure, m  is chosen as the m that yields the minimum SIC.  We refer to 

these procedures that do not conduct model selection over R as the “baseline posterior 

odds” and “baseline SIC” procedures in the following, while the procedures that do 

conduct model selection over R are referred to as the “preferred posterior odds” and 

“preferred SIC” procedures.  

We specify the following parameter prior distributions for use in the simulation 

experiments.  The prior mean and variance-covariance matrix for Rβ , given by  and 

, are set equal to a vector of zeros and the identify matrix respectively, implying that 

each element of 

C

Σ

Rβ  has a standard normal prior distribution and is independent of all 

other elements of Rβ .  The prior for each residual variance parameter, iσ , is inverted 

gamma with parameters 001.2=ν  and 1=δ .  Finally, the minimum regime length 

considered is set to , which is 6% of the sample size.  Results for each model are 

based on 10,000 draws from the Gibbs Sampler after an initial 5000 “burn-in” draws to 

obtain convergence.  All results reported below are based on 500 generated time series. 

12=b

In the first set of simulations, we evaluate the performance of the model selection 

procedures when the true model has no structural breaks.  In particular, we generate time 
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series from (13) with .  It is well known that the performance of frequentist-based 

tests for structural breaks is quite sensitive to the persistence of regressors, with tests 

being severely oversized for high levels of persistence (Diebold and Chen, 1996).  To 

evaluate the sensitivity of the procedures developed here to persistent regressors we 

consider three possible calibrations of 

0=m

ρ , corresponding to low, moderate and high 

persistence, and given by 3.0=ρ , 6.0=ρ  and 9.0=ρ .  For each value of ρ , we set 

110 === σββ . 

Table 1 records the proportion of simulations for which the indicated model selection 

procedure chose the  model.  There are several items of particular interest in these 

results.  First, the preferred posterior odds procedure performs quite well when the true 

data generating process has constant parameters, selecting an (incorrect) model that 

includes a structural break in only about 2% of the simulations.  For the preferred SIC 

procedure these proportions are lower, but still above 90%.  Second, the tendency for 

each of the model-selection procedures to falsely identify a structural break is largely 

unaffected by the persistence of the regressor in the simulated data.  Finally, the 

performance of the preferred posterior odds procedure is similar to that for the baseline 

posterior odds procedure.  That the preferred procedure does not improve on the baseline 

procedure in this case is not surprising, as there is no reason to expect that conducting 

model selection over both m and R would have an advantage in the case where the true 

model does not contain a structural break.  However, there does not appear to be any 

noticeable disadvantage to using the preferred approach to model selection either. 

0=m

In the second set of simulations, we evaluate the performance of the model selection 

procedures when the true model has a single structural break.  In particular, we generate 

16 



data from the model in (13) with 1=m .  We consider six potential data generating 

processes.  In the first two, we generate data from a model with a break in 0β  only.  We 

consider both small and large breaks, where these break sizes are calibrated by selecting 

values of  and  for which the baseline posterior odds procedure selects the correct 

value of m approximately 25% and 75% of the time respectively.

1
0β

2
0β

3  These values are 

given by { }41.0,0 2
0

1
0 == ββ  for the small break case and { }63.0,0 2

0
1
0 == ββ  for the 

large break case.  For each case, we set 11 == σβ .  In the second set of data generating 

processes, we consider a model with a break in 1β  only.  The break is again calibrated as 

being either small or large as described above, and parameterized as { }32.0,0 2
1

1
1 == ββ  

for the small break case and { }53.0,0 2
1

1
1 == ββ  for the large break case.  For each case, 

we set 10 == σβ .  Finally, we consider two cases for which there is a break in σ  only.  

We again consider small or large breaks, parameterized as { }1,73.0 21 == σσ  for the 

small break case, and { }1,63.0 21 == σσ  for the large break case.  For each case, we set 

110 == ββ .  For all cases, we set the break date, 1τ , in the middle of the sample period, 

so that 1τ  = 100.  The autoregressive parameter for the regressor, ρ , is set equal to 0.6.   

Table 2 records the proportion of simulations for which the indicated model selection 

procedure chose the  model.  For the preferred posterior odds and SIC procedures, 

the table also records the proportion of simulations for which the model selection 

procedure chose both m and R correctly.  A primary result to emphasize from Table 2 is 

that conducting model selection over both m and R yields substantial improvements, in 

1=m

                                                 
3 Specifically, the percentage of simulations for which the baseline Bayesian procedure selects the correct 
value for m is within one percentage point of 25% for the small break size and 75% for the large break size.   
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terms of the frequency with which the correct value of m is chosen, over the baseline 

procedures conducted over m only.  For the small break case, where the baseline posterior 

odds procedure selects the correct value of m in 25% of the simulations, the preferred 

posterior odds procedure selects the correct value of m in well above 40% of the 

simulations in all cases.  This improvement is even more substantial for SIC-based model 

selection.  In this case, the baseline procedure selects the correct value of m in 20% or 

less of the simulations, while the preferred procedure selects the correct value of m in 

around 50% of the simulations.  Not surprisingly, the improvements generated by the 

preferred procedure become smaller when we consider larger breaks.  However, the 

improvement is still substantial, on the order of 10-15 percentage points for the posterior 

odds procedures and 20-25 percentage points for the SIC procedures.  Table 2 also 

demonstrates that the preferred procedures select the correct values of m and R close to as 

often as the correct value of m only, suggesting that the procedure is reasonably 

successful at identifying the correct subset of parameters that break at each break date.   

In the final set of simulations, we evaluate the performance of the model selection 

procedures when the true model has two structural breaks.  In particular, we generate data 

from the model in (13) with .  We again consider six potential data generating 

processes.  In the first two, we generate data from a model with two breaks in 

2=m

0β  only.  

We again consider both small and large breaks, calibrated as discussed above for the case 

of a single structural break.  These values are given by { }0,67.0,0 3
0

2
0

1
0 === βββ  for the 

small break case and { }0,91.0,0 3
0

2
0

1
0 === βββ  for the large break case.  For each case, 

we set 11 == σβ .  For the second set of data generating processes, we consider a model 

with two breaks in 1β  only.  Here, small and large breaks are parameterized as 
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{ }0,53.0,0 2
1

2
1

1
1 === βββ  and { }0,74.0,0 2

1
2

1
1
1 === βββ  respectively.  For each case, 

we set 10 == σβ .  Finally, we consider two cases for which there are two breaks in σ  

only, with small and large breaks parameterized as { }62.0,1,62.0 321 === σσσ  and 

{ }51.0,1,51.0 321 === σσσ  respectively.  For each case, we set 110 == ββ .  For all 

simulations, we space the break dates, 1τ  and 2τ , equally throughout the sample at dates 

67 and 134 respectively.  The autoregressive parameter for the regressor, ρ , is set equal 

to 0.6. 

Table 3 records the proportion of simulations for which the indicated model selection 

procedure chose the  model.  For the preferred posterior odds and SIC procedures, 

the table also records the proportion of simulations for which the model selection 

procedure chose both m and R correctly.  The results in Table 3 give a similar message to 

those in Table 2 for the case of a single structural break.  Specifically, in all cases 

considered, the preferred posterior odds procedure selects the correct value of m 

substantially more often than the baseline procedure.  This improvement is even larger 

than was the case for a single structural break, which is not surprising given that the 

number of unnecessary parameter breaks allowed by the baseline procedure grows in the 

simulations with two breaks from those with a single break.  Similar results are also 

obtained for the SIC procedures, although, again, the benefits to conducting model 

selection over R in addition to m are more pronounced.  Finally, Table 3 again 

demonstrates that the preferred procedures are fairly successful at selecting the correct 

value of both m and R, and thus the correct subset of parameters that break at each break 

date.  

2=m
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In summary, the results from these simulation exercises are suggestive that model 

selection conducted over both the number of structural breaks and the subset of 

parameters that change at each break date can yield important benefits over model 

selection procedures in which all parameters are allowed to break at each break date.  

One such benefit is an improved frequency with which the correct number of structural 

breaks are chosen, which, as would be expected, is particularly the case as the total 

number of potential parameter breaks grows relative to the total number of actual 

parameter breaks.  Another benefit is that the model selection procedures conducted over 

both m and R provide some reliable information regarding the subset of parameters that 

undergo breaks at each break date, information that is absent from procedures that simply 

allow all parameters to change at each break date. 

 

4. Application to U.S. Inflation Dynamics 

A substantial recent literature is devoted to evaluating the evidence for parameter 

change in time-series models for the post-war U.S. inflation rate.  In particular, Cogley 

and Sargent (2001) argue that the persistence of shocks to the U.S. inflation rate have 

varied considerably over the sample period, being quite low prior to the “great inflation” 

and after the Volcker disinflation, while being quite high between these episodes.  The 

Cogley and Sargent results were challenged by Pivetta and Reis (2007) and Stock (2001).  

In particular, these authors argue that evidence for shifts in persistence is not statistically 

significant, particularly once one allows for shifts in the residual variance of the model 

for the inflation rate.  Other authors, such as Levin and Piger (2002), have argued that 

there are important structural breaks in the intercept parameter of an autoregression for 
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inflation, and that allowing for such breaks is important to properly characterize inflation 

persistence.  The stakes in this debate are quite high, as the stylized facts regarding 

inflation are key metrics often used to evaluate the plausibility of structural 

macroeconomic models.  

Here we apply the Bayesian model selection procedures described above to evaluate 

the evidence for structural breaks in the parameters of an autoregressive process fit to the 

post-war U.S. inflation rate.  We measure inflation as the quarterly percentage change in 

the U.S. GDP Deflator, sampled from the first quarter of 1953 through the second quarter 

of 2005.  A plot of this data is shown in Figure 1.  We are particularly interested in four 

questions:  1) Is there strong statistical evidence of structural change in the parameters of 

an autoregression fit to the U.S. inflation rate?  2) If so, is there evidence of structural 

change in conditional mean parameters or only in residual variance parameters?  3) If 

there is evidence of changes in conditional mean parameters, is there evidence for 

changes in the persistence of the inflation process?  4) Does allowing for structural 

change in the parameters of an autoregression for inflation alter our estimates of inflation 

persistence?  

We fit the following kth-order autoregressive model with potential structural breaks in 

intercept, autoregressive parameters, and residual variance to the inflation rate : ty
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A key quantity of interest in the model in (14) is the persistence of , or the extent to 

which an innovation, 

ty

tε , has long-lived effects on the level of the inflation rate.  We 

measure persistence via the sum of the autoregressive coefficients, denoted . ∑
=

=
k

j

i
j

i

1

ρρ

As discussed in Pivetta and Reis (2007), for 1<iρ , ( )iρ−1/1   gives the area under the 

impulse response function, and is thus an intuitively appealing measure of the persistence 

of a time-series process. 

To estimate  directly, we rewrite (14) using the Dickey-Fuller transformation:  iρ
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where  and ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

+=

k

sj

i
j

i
s

1

ργ )1,0( ..~ Ndiitε .  In the notation of the model in (1), we 

have  and ( )')1(11 ,...,,,1 −−−− ΔΔ= ktttt yyyx ( )'1,...,,, i
k

i
j

iii
−= γγραβ , 1,...,1 += mi . 

We use the following parameter prior specifications for the model in (15).  For given 

values of m, R, and k, we have the vector of conditional mean parameters Rβ .  The 

elements of this vector are assigned prior independence, and each is given a Gaussian 

prior distribution with variance equal to 1 and mean equal to 1 for  and  and 0 for 

, .  Each  is assigned an inverted gamma prior distribution with 

iα iρ

iγ 1,...,1 += mi iσ
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parameters 001.2=ν  and 1=δ .  Finally, the minimum regime length is given by 12=b  

quarters.  Results are based on 10,000 draws of the Gibbs Sampler after an initial 5000 

“burn-in” draws to obtain convergence. 

To conduct model selection for the model in (15), we use the preferred posterior odds 

procedure outlined in Section 2.4.  In particular, we consider all possible combinations of 

shifts in the intercept parameter, the autoregressive parameters, and the residual variance 

parameter at each potential break date.  To economize on the model space considered, we 

consider the autoregressive parameters as a single block and thus assume that these 

parameters undergo structural breaks together.  In addition, we extend the Bayesian 

model selection procedure to allow for model selection over the lag length, k.  In 

particular, a model is defined by values for m, R, and k, denoted ( )kRmM ,, .  We 

augment our prior over models with a flat prior over k, where we consider a maximum 

lag length of .  That is, we have: *k

 

 ( ) **

1*1*
1

1),,(
kNm

kRmMP
m+

= . (16) 

 
We then conduct model selection using the posterior model probabilities, 

( ykRmMP )~|),,( .  As a means of comparison, we also generate posterior model 

probabilities from our baseline posterior odds procedure, where we assume that all 

parameters break at each potential break date, and thus do not conduct model selection 

over R , but instead over m and k only.  Finally, for all the results presented below, we set 

 and .   4* =k 4* =m
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Table 4 presents the posterior probabilities for alternative values of the number of 

structural breaks, m, defined as ( )∑∑
k R

ykRmMP ~|),,( .  Table 4 also presents posterior 

probabilities for alternative m obtained from the baseline posterior odds procedure.  The 

results for the preferred posterior odds procedure demonstrate that there is overwhelming 

evidence for structural breaks, and that 3=m  is the preferred number of structural 

breaks.  The results for the baseline posterior odds procedure also suggest overwhelming 

evidence for structural breaks, although the chosen number of breaks is four rather than 

three. 

Next we move to evaluating the nature of this structural change.  We are first 

interested in evaluating the claim that structural breaks in the inflation rate are confined 

to structural breaks in the residual variance parameter only, and do not extend to the 

conditional mean parameters.  Table 5 compares the posterior probability of models with 

structural breaks in only residual variance with the posterior probability of models that 

contain structural breaks in conditional mean parameters.  These probabilities are 

computed using two procedures.  The first is analogous to our “baseline” posterior odds 

procedure, and compares the posterior probability of models that contain only residual 

variance breaks with the posterior probability of models that contain breaks in all 

conditional mean parameters.  The second is our preferred posterior odds procedure, 

which will differ from the baseline procedure by considering models in which only a 

subset of the conditional mean parameters are allowed to change at each break date. 

As Table 5 makes clear, when the baseline procedure is used, the posterior probability 

that the model contains only breaks in residual variance dominates the posterior 

probability that the model contains structural breaks in conditional mean parameters.  
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However, when the preferred procedure is used, these probabilities reverse, with models 

containing structural breaks in conditional mean parameters dominating those with 

structural breaks in only residual variance. 4  Put simply, the preferred procedure reveals 

high posterior probability models, not considered by the baseline procedure, in which 

only a subset of the conditional mean parameters break.  These results demonstrate that 

model selection over R can be crucial for evaluating the evidence for alternative types of 

parameter breaks. 

What is the nature of the structural breaks in conditional mean parameters?  We are 

particularly interested in whether there is evidence in favor of shifts in autoregressive 

parameters, or if the breaks in conditional mean parameters are confined to intercept 

shifts.  An advantage of conducting model selection over R is that it allows us to provide 

evidence on this question.  In particular, we begin by restricting the model space to only 

those models that have a structural break in conditional mean parameters.  We then 

divide this model space into those models that do and do not contain structural breaks in 

autoregressive parameters and construct the posterior probability for each class of 

models.  The results suggest that the models with breaks in autoregressive parameters are 

given 33% posterior probability, while the models without breaks in autoregressive 

parameters are given 67% posterior probability.  Thus, while there does not seem to be 

                                                 
4 For a given value for the number of structural breaks, m, and lag length, k, the prior model probabilities in 
(16) give equal prior probability to each possible choice of which parameters are allowed to break, or R.  
As for each value of m and k there is only one model that has breaks in only the residual variance 
parameter, the prior probability assigned to models with only variance breaks shrinks relative to the prior 
probability assigned to models with breaks in conditional mean parameters as m or k increases.  To assess 
the sensitivity of the results in Table 5 to this prior, we computed posterior probabilities using an 
alternative prior that assigns equal weight to the class of models with breaks in only residual variance vs. 
the class of models with breaks in conditional mean parameters.  Under this prior, the results in Table 5 are 
qualitatively similar.  In particular, the class of models with breaks in conditional mean parameters are 
assigned substantially more posterior weight than the class of models with breaks in only the residual 
variance parameter. 
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strong evidence in favor of shifts in autoregressive parameters, the data is not speaking 

strongly against such shifts either.  This suggests that while there is clear evidence in 

favor of shifts in conditional mean parameters, the evidence is not clear as to whether 

these shifts include breaks in autoregressive parameters, and thus in the persistence of the 

inflation process. 

We now study those models for which the number of structural breaks is equal to the 

chosen value of  m = 3 in more detail.  Table 6 contains specification and estimation 

details for the highest posterior probability models with m = 3.  In particular, each model 

presented in Table 6 has a posterior probability that is no less than 1/10th that of the most 

preferred model with m = 3.  Several conclusions can be drawn from these results.  First, 

there are a large number and variety of models in Table 6, suggesting that the data does 

not speak definitively about the exact form of the preferred model with three structural 

breaks.  Second, the timing of the structural breaks generally fall into one of two 

categories.  In the first, the structural breaks occur in the late 1960s, early 1970s and early 

1980s, while in the second the structural breaks occur in the late 1960s, early 1980s and 

early 1990s.  Third, structural breaks in the intercept and residual variance parameters 

appear to be a dominant feature of the data.  In particular, of the 25 models presented in 

Table 6, all allow for at least two breaks in residual variance, while 13 allow for three 

breaks in residual variance.  Correspondingly, 24 of the models allow for at least two 

shifts in intercept, while 12 allow for three shifts in intercept.  Fourth, there is less 

evidence of any shifts in autoregressive parameters.  Specifically, only 7 of the 25 models 

in Table 6 allow for a shift in the autoregressive parameters. 
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When the data does not definitely select an exact model specification, as is the case in 

Table 6, one would likely be hesitant to base conclusions about key parameters on the 

results from any one most preferred specification.  An advantage of the Bayesian 

procedures employed in this paper is the ability to characterize key parameters of interest 

without conditioning on a particular value for m, R, or k.  For example, we might be 

interested in estimating the sum of the autoregressive coefficients at each quarter in the 

sample, defined as tρ .  A posterior distribution for this quantity that is averaged over 

potential values for  m, R and k is given by: 

 
 ( )( ) ( )( )∑∑∑=

k m R
tt ykRmMPykRmMfyf ~|,,*~,,,|)~|( ρρ . (17) 

 
For comparison purposes, we will also be interested in an estimate of tρ  conditional on a 

particular value for m, given by: 

 
 ( )( ) ( )( )ykRmMPykRmMfymf

k R
tt

~|,,*~,,,|)~,|( ∑∑= ρρ . (18) 

 
Figure 2 presents the 5th, 50th and 95th percentile of )~,0|( ymf t =ρ , which is the 

estimate of the persistence of the inflation process assuming there have been no structural 

breaks.  The estimated persistence of the inflation process is quite high, with a median 

posterior value above 0.9 and 95th posterior percentile approaching one.  This is 

consistent with a large existing literature documenting high inflation persistence when 

measured using a constant parameter autoregression over the post-war period (e.g. 

Nelson and Plosser, 1982; Fuhrer and Moore, 1995).  Figure 3 instead presents the 5th, 

50th and 95th percentile of )~|( yf tρ , that is the estimate of persistence allowing for 
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structural breaks.  There are at least three items of interest in Figure 3.  First of all, the 

median estimate of the persistence process is largely constant.  Second, the median 

estimate of the persistence process is substantially lower than that obtained for the 

constant parameter autoregression presented in Figure 2.  For example, over the entire 

sample, the median estimate is below the 5th percentile of the posterior for the constant 

parameter autoregression.  This lowered persistence comes from allowing for intercept 

shifts in the model with structural breaks.  Finally, the uncertainty surrounding the 

persistence parameter has become quite wide over the last two decades, with the 95% 

highest posterior density interval spanning from 0.2 to 0.9 toward the end of the sample.  

It is also interesting to characterize the posterior distribution of the residual standard 

deviation at each quarter in the sample, denoted tσ .  Figure 4 presents the 5th, 50th and 

95th percentile of )~|( yf tσ , that is the estimate of residual standard deviation averaging 

over different values of m, R, and k.  This residual standard deviation has been far from 

constant.  In particular it has varied from a low volatility regime in the 1950s and much 

of the 1960s to a high volatility regime from the late-1960s to the early 1980s, before 

returning to a low volatility regime beginning in the early 1980s.   

In summary, these results suggest that there have been important structural breaks in 

both the conditional mean parameters and conditional variance parameters of an 

autoregression for post-war U.S. inflation.  We find that the evidence for shifts in 

conditional mean parameters are only revealed once we conduct model selection over not 

just the number of structural breaks, but also the subset of parameters that break at each 

break date, demonstrating the empirical relevance of the model selection procedures 

developed in this paper.  Finally, we find no strong evidence for time variation in the 
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persistence of U.S. inflation.  However, the estimates of persistence that we obtain are 

substantially lower than those obtained in the existing literature using constant parameter 

autoregressions, as these models ignore important shifts in the intercept parameter of the 

inflation autoregression. 

 

5. Conclusion 

We have developed a Bayesian approach to model selection in regression models with 

structural breaks in conditional mean and residual variance parameters. A novel feature 

of our approach is that it does not assume knowledge of the parameter subset that 

undergoes structural breaks, but instead conducts model selection jointly over the number 

of structural breaks and the subset of the parameter vector that changes at each break 

date.  Simulation experiments suggest there are potentially sizeable gains for break 

detection to conducting model selection over the subset of parameters that undergo 

breaks rather than simply allowing all parameters to change.   

We apply the proposed model selection procedure to characterize possible structural 

breaks in conditional mean and residual variance parameters in an autoregressive model 

for the U.S. inflation rate.  We find substantial evidence for changes in both residual 

variance and conditional mean parameters, the latter of which is revealed only when one 

conducts model selection over the subset of conditional mean parameters that undergo 

breaks, a result that demonstrates the empirical relevance of our proposed model 

selection procedure.  We obtain estimates of inflation persistence that are substantially 

lower than those obtained assuming a constant parameter autoregression. 
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Appendix: Gibbs Sampling Algorithm for Simulating the Posterior of the 

Regression Model with Structural Breaks 

 
This appendix describes the Gibbs Sampling algorithm used to simulate the posterior 

distribution of model parameters for the regression model with multiple structural breaks 

given in equation 3, conditional on the prior distributions given in Section 2.2.  The 

Gibbs sampling algorithm proceeds by drawing iteratively from the full set of conditional 

posterior densities in the following steps: 

A) Generate a draw of , denoted Rβ Rβ , from ( )yf RR
~,,| τσβ  

B) Generate a draw of Rσ , denoted Rσ , from ( )yf RR
~,,| τβσ  

C) Generate a draw of τ , denoted τ , using the following m steps: 

C1) Generate a draw of 1τ , denoted 1τ , from ( )yf mRR
~,,...,,,| 21 ττσβτ  

C2) Generate a draw of 2τ , denoted 2τ , from ( )yf mRR
~,,...,,,,| 312 τττσβτ  

. 

. 

Cm) Generate a draw of mτ , denoted mτ , from ( )yf mRRm
~,,...,,,| 11 −ττσβτ  

D) Set RR σσ =  and ττ =  and repeat steps A-D. 

The algorithm is initiated with arbitrary values of Rσ  and τ .  Assuming certain 

regularity conditions are met (Tierney, 1994) draws from this algorithm will converge to 

draws from the posterior density of interest ( )yf RR
~|,, τσβ , which can be used to form 

point estimates and highest posterior density intervals. 

Given the Gaussian likelihood function and conjugate priors, draws from 

( )yf RR
~,,| τσβ  and ( yf RR )~,,| τβσ  are straightforward.  Specifically, conditional on τ , 
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the model in (3) is a linear regression model with dummy variables.  The conditional 

posterior density function for Rβ  is then: 

 
 ( ) ~~,,| yf RR τσβ  (A1) 

 ( )( ) ( )( ) ( )( )( )12'12'112'1 ~,~~~ −−−−−−−− •+Σ•+Σ•+Σ RRTRRTRRRTR XsIXysIXCXsIXN , 

 
from which samples can be easily obtained via draws from a multivariate random normal 

density.  It can also be shown that , and: ( ) ( )∏
=

=
σ

τβστβσ
q

i
R

i
RR yfyf

1

~,,|~,,|

 
 ( ) ( ) ( )( )R

i
R

i
R

i
R

i
iiR

i XyXyIGyf ββδττντβσ −−+−+ −
~~,~~,,| '

1 , (A2) 

 
where iy~  and  hold the i

RX 11 +−iτ  through iτ  rows of  y~  and  respectively. A draw 

from 

RX

( yf RR )~,,| τβσ  is then generated as  draws from σq ( )yf R
i ~,,| τβσ , .  σqi ,...,1=

To complete the Gibbs-sampling algorithm, we require draws from 

( yf iRRi )~,,,| ≠τσβτ , which is given by: 

 

 ( ) ( ) ( )
( )iRR

iRRiiRRi
iRRi yf

fyLyf
≠

≠≠
≠ =

τσβ
τσβττσβττσβτ

,,|~
,,|~,,,|~,,,| . (A3) 

 
In A3, ( yL iRRi )~,,,| ≠τσβτ  is the model likelihood function for iτ  holding all other 

parameters fixed.  Given the uniform prior, ( )τf , and the fact that the denominator of 

(A3) does not depend on iτ  we have: 

 
 ( ) ( )yLyf iRRiiRRi

~,,,|~,,,| ≠≠ ∝ τσβττσβτ . (A4) 
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Expression (A4) can be simplified further by noting that: 

 
 ( ) ( )

11
,....,,,,,|~,,,| 111 +− ++−≠ ∝

ii
yyLyL iiRRiiRRi ττττσβττσβτ . (A5) 

 
Thus, the conditional posterior distribution function for iτ  is a multinomial distribution 

defined over the admissible range for iτ , given by bb ii −+ +− 11 ,...,ττ , with probabilities 

proportional to the likelihood function for iτ  evaluated using only data from 

11 ,...,1 +− + ii ττ . 

Note that steps C1-Cm in the Gibbs Sampler above could be replaced with a single 

draw from ( yf RR )~,,| σβτ , for which it is straightforward to show: 

 
 ( ) ( )yLyf RRRR

~,,|~,,| σβτσβτ ∝ . (A6) 

 
However, in practice, obtaining a draw from (A6) can be very computationally intensive, 

as it requires evaluating the likelihood function at all admissible τ .  For example, for 

T=200,  and , each draw from (A6) requires over 1 million evaluations of the 

likelihood function. By contrast obtaining a draw of 

3=m 1=b

τ  from (A4) requires less than 

 evaluations of the likelihood function.Tm * 5

                                                 
5 Chib (1998) develops an alternative, computationally efficient, approach to draw the entire vector of 
break dates simultaneously, which is based on modeling the structural break process as an m+1 regime 
Markov-switching process with absorbing states. 
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Table 1 
Simulation Results:  No Structural Breaks 

 
 Low Persistence Moderate Persistence High Persistence 

Preferred Procedures    

   Posterior Odds 97.8 98.8 98.0 
   SIC 92.4 93.6 90.8 

    

Baseline Procedures    

   Posterior Odds 98.8 99.4 99.6 
   SIC 99.8 99.6 99.6 
 
 
Notes:  This table holds the proportion of 500 simulations for which the indicated model selection 
procedure selected the correct value of m = 0 structural breaks when the data generating process 
is given by equation (13).  “Preferred Procedures” indicate model selection is conducted over 
both the number of structural breaks and the subset of the parameter vector that changes at each 
break date.  “Baseline Procedures” indicate model selection is conducted over the number of 
structural breaks only, with all parameters allowed to change at each break date.  “Low 
Persistence”, “Moderate Persistence” and “High Persistence” refer to the persistence of the 
regressor in equation (13).  
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Table 2 
Simulation Results:  One Structural Break 

 
 Small Break Large Break 

Break in 0β  Correct Number 
of Breaks Correct Model Correct Number 

of Breaks Correct Model 

Preferred Procedures     

   Posterior Odds 46.2 39.2 85.6 77.6 
   SIC 50.6 43.6 86.2 80.6 

Baseline Procedures     

   Posterior Odds 26.0 NA 75.8 NA 
   SIC 16.4 NA 63.6 NA 

     

Break in 1β      

Preferred Procedures     

   Posterior Odds 42.0 36.2 86.2 77.6 
   SIC 49.2 43.4 88.0 82.8 

Baseline Procedures     

   Posterior Odds 24.0 NA 74.8 NA 
   SIC 13.8 NA 62.0 NA 
     

Break in σ      

Preferred Procedures     

   Posterior Odds 56.0 53.0 91.4 88.4 
   SIC 55.4 47.8 87.6 84.0 

Baseline Procedures     

   Posterior Odds 24.0 NA 74.0 NA 
   SIC 20.2 NA 68.2 NA 
 
 
Notes:  This table holds the proportion of 500 simulations for which the indicated model selection 
procedure selected the correct value of m = 1 structural break (given in the column labeled 
“Correct Number of Breaks”), as well as the correct subset of the parameter vector that changes at 
the break date (given in the column labeled “Correct Model”).  The data generating process for 
the simulated data is given by equation (13). “Preferred Procedures” indicate model selection is 
conducted over both the number of structural breaks and the subset of the parameter vector that 
changes at each break date.  “Baseline Procedures” indicate model selection is conducted over the 
number of structural breaks only, with all parameters allowed to change at each break date. 
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Table 3 
Simulation Results:  Two Structural Breaks 

 
 

 Small Breaks Large Breaks 

Break in 0β  Correct Number 
of Breaks Correct Model Correct Number 

of Breaks Correct Model 

Preferred Procedures     

   Posterior Odds 55.4 42.2 92.8 73.4 
   SIC 67.2 58.0 96.0 86.0 

Baseline Procedures     

   Posterior Odds 25.0 NA 75.2 NA 
   SIC 11.2 NA 49.2 NA 

     

Break in 1β      

Preferred Procedures     

   Posterior Odds 48.8 36.6 89.8 71.4 
   SIC 57.2 47.4 93.4 82.4 

Baseline Procedures     

   Posterior Odds 25.2 NA 74.8 NA 
   SIC 8.4 NA 50.0 NA 
     
Break in σ      

Preferred Procedures     

   Posterior Odds 65.8 60.6 94.8 81.4 
   SIC 69.8 59.0 97.8 88.2 

Baseline Procedures     

   Posterior Odds 25.2 NA 75.4 NA 
   SIC 17.8 NA 75.6 NA 
 
 
Notes:  This table holds the proportion of 500 simulations for which the indicated model selection 
procedure selected the correct value of m = 2 structural breaks (given in the column labeled 
“Correct Number of Breaks”), as well as the correct subset of the parameter vector that changes at 
the break dates (given in the column labeled “Correct Model”).  The data generating process for 
the simulated data is given by equation (13). “Preferred Procedures” indicate model selection is 
conducted over both the number of structural breaks and the subset of the parameter vector that 
changes at each break date.  “Baseline Procedures” indicate model selection is conducted over the 
number of structural breaks only, with all parameters allowed to change at each break date. 
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Table 4 
U.S. GDP Deflator Inflation Rate (1953:Q1 – 2005:Q2) 

Posterior Probability of Alternative Numbers of Structural Breaks in 
Autoregressive Model 

 

Number of Breaks Preferred Procedure Baseline Procedure 

No Breaks 0.0% 0.0% 

One Break 0.0% 0.0% 

Two Breaks 27.3% 4.8% 

Three Breaks 49.7% 42.2% 

Four Breaks 23.0% 53.0% 

 
Notes:  This table holds posterior model probabilities for autoregressive models of U.S. GDP 
Deflator inflation under alternative assumptions for the number of structural breaks.  The 
“Preferred Procedure” computes the posterior probability for a given number of breaks without 
conditioning on a choice for the subset of the parameter vector that is allowed to change at each 
break date.  That is, this choice is integrated out of the reported model probability.  The “Baseline 
Procedure” computes the posterior probability for a given number of breaks conditional on 
allowing all parameters to break at each break date.  The sample period considered is 1953:Q1-
2005:Q2.  
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Table 5 
U.S. GDP Deflator Inflation Rate (1953:Q1 – 2005:Q2) 

Posterior Probability of Autoregressive Models with Only Breaks in Residual 
Variance vs. Autoregressive Models with Breaks in Conditional Mean Parameters 

 

 Models with Only Breaks 
in Variance 

Models with Breaks in 
Conditional Mean Parameters

Baseline Procedure 94.5% 5.5% 

Preferred Procedure 2.2% 97.8% 

 
Notes:  This table holds posterior model probabilities for autoregressive models of U.S. GDP 
Deflator inflation.  The column labeled “Models with Only Breaks in Variance” contains 
posterior probabilities of the class of models that contain structural breaks in the residual variance 
parameter only.  The column labeled “Models with Breaks in Conditional Mean Parameters” 
contains posterior probabilities of the class of models that contain structural breaks in conditional 
mean parameters, such as the intercept or autoregressive parameters.  The probabilities in both 
columns are computed assuming a maximum of four structural breaks.  The “Preferred 
Procedure” computes the posterior probability in the second column without conditioning on a 
choice for the subset of the conditional mean parameters that are allowed to change at each break 
date.  The “Baseline Procedure” computes the posterior probability in the second column 
conditional on allowing all conditional mean parameters to break at each break date.  The sample 
period considered is 1953:Q1-2005:Q2.  
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Table 6 
U.S. GDP Deflator Inflation Rate (1953:Q1 – 2005:Q2) 

Specification and Estimation Details for Highest Posterior Probability 
Autoregressive Models with Three Structural Breaks 

 
Posterior Probability 

Relative to Most 
Preferred Model 

First Break Second Break Third Break Lag Order 

1.00 c  65:Q4 σ ,c  70:Q3 σ ,c  81:Q3 4 

0.90 σ  ,c  66:Q1 σ ,c  71:Q3 σ ,c  81:Q2 4 

0.67 c  66:Q2 σ  70:Q3 σ ,c  81:Q3 4 

0.61 σ  ,c  68:Q2 σφ   ,  82:Q4 σ ,c  91:Q3 1 

0.50 σ  ,c  67:Q2 σ  70:Q3 σ ,c  81:Q3 4 

0.41 σ  ,c  68:Q1 σ ,c  81:Q3 σ  91:Q3 4 

0.30 σ  60:Q3 σ ,c  67:Q3 σ ,c  81:Q3 4 

0.27 σ  ,c  67:Q3 c  73:Q2 σ ,c  81:Q2 4 

0.27 σ  ,c  68:Q2 σφ  , ,c  82:Q4 σ ,c  91:Q3 1 

0.25 σ  ,c  68:Q2 σφ   ,  82:Q4 c  91:Q3 1 

0.25 c  65:Q4 σ ,c  70:Q3 σ ,c  81:Q3 2 

0.25 σ  ,c  66:Q3 σ ,c  71:Q1 σ ,c  81:Q4 2 

0.20 σ  ,c  68:Q3 σφ   ,  82:Q2 σφ   ,  91:Q2 1 

0.18 c  65:Q4 σ ,c  70:Q4 σ ,c  81:Q3 3 

0.17 c  67:Q2 σ  70:Q3 σ ,c  81:Q4 2 

0.15 σ  ,c  66:Q2 σ ,c  71:Q3 σ ,c  81:Q3 3 

0.15 σ  ,c  67:Q4 σ ,c  81:Q3 c  91:Q2 4 

0.14 σ  ,c  67:Q4 σ ,c  81:Q4 σφ   ,  91:Q2 1 

0.14 σ  ,c  67:Q4 σ ,c  81:Q3 σ  91:Q4 2 

0.12 σ  ,c  67:Q3 σ  70:Q3 σ ,c  81:Q4 2 

0.12 σ  ,c  68:Q1 σφ  ,  82:Q2 σφ  ,  ,c  91:Q2 1 

0.12 σ  ,c  68:Q2 σφ  ,  ,c  82:Q4 c  91:Q3 1 

0.11 σ  ,c  67:Q3 c  73:Q2 σ ,c  81:Q3 2 

0.11 c  67:Q2 σ  70:Q3 σ ,c  81:Q2 3 

0.10 σ  ,c  67:Q4 σ ,c  81:Q3 c  91:Q2 2 
 
Notes:  This table holds specification and estimation details for the highest posterior probability 
autoregressive models of U.S. GDP Deflator inflation with three structural breaks.  For each of 
the three breaks, the table gives the parameters that are allowed to change at that break as well as 
the median of the posterior distribution of the break date.  The sample period considered is 
1953:Q1-2005:Q2.  
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Figure 1 
U.S. GDP Deflator Inflation Rate (1953:Q1-2005:Q2) 
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Notes:  This figure plots quarterly, annualized growth rates of the U.S. GDP Deflator over the 
sample period 1953:Q1 – 2005:Q2.   
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Figure 2 
U.S. GDP Deflator Inflation Rate (1953:Q1 – 2005:Q2) 

5th, 50th, 95th Percentiles of Posterior Distribution for Sum of Autoregressive 
Coefficients from Model with No Break 
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Notes:  This figure plots percentiles of the posterior distribution of the sum of the autoregressive 
coefficients from a fixed parameter autoregression for U.S. GDP Deflator inflation over the 
sample period 1953:Q1 – 2005:Q2.   
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Figure 3 
U.S. GDP Deflator Inflation Rate (1953:Q1 – 2005:Q2) 

5th, 50th, 95th Percentiles of Posterior Distribution for Sum of  
Autoregressive Coefficients 
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Notes:  This figure plots percentiles of the posterior distribution for the sum of the autoregressive 
coefficients from an autoregression for U.S. GDP Deflator inflation over the sample period 
1953:Q1 – 2005:Q2.  The posterior probability is not conditional on the choice of whether to 
include structural breaks, the number of structural breaks, or the subset of the parameter vector 
allowed to change at each break date. 
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Figure 4 
U.S. GDP Deflator Inflation Rate (1953:Q1 – 2005:Q2) 

5th, 50th, 95th Percentiles of Posterior Distribution for Residual Standard Deviation 
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Notes:  This figure plots percentiles of the posterior distribution for the residual variance 
parameter from an autoregression for U.S. GDP Deflator inflation over the sample period 
1953:Q1 – 2005:Q2.  The posterior probability is not conditional on the choice of whether to 
include structural breaks, the number of structural breaks, or the subset of the parameter vector 
allowed to change at each break date. 
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