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1 Models of Parameter Change

Models that allow for parameter change of unknown timing have become very popular tools.

Here we will discuss Bayesian estimation of two such models: 1) Models with structural

breaks that occur at unknown timing and 2) Markov-switching models.

2 Structural Break Models

• Suppose we have T observations on a variable yt, collected in the vector Y = (y1, y2, . . . , yT )′.

Suppose we specify a model for Y , with associated parameter vector γt. We index γ

with a t subscript to allow for the possibility that γ changes over time. We will allow

γ to change over time by assuming that there have been M structural changes in this

parameter vector that occur at dates τ =
(
τ 1, τ 2, . . . , τM

)′
. That is:

γt = γ0D0t + γ1D1t + · · ·+ γMDMt

where:

D0t =


1 if t < τ 1

0 otherwise

Dit =


1 if τ i ≤ t < τ i+1

0 otherwise

i = 1, . . . ,M − 1

DMt =


1 if t ≥ τM

0 otherwise
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We will be interested in the case where τ is unobserved. The parameters of the model

are then θ = (γ0, γ1, . . . , γM)′ and τ .

• Likelihood Function

The likelihood function is written generically as:

p (Y |θ, τ)

We will assume that this function can be calculated.

• Prior

We will assume prior independence between θ and τ :

p (θ, τ) = p (θ) Pr (τ)

The prior for θ is written generically as:

p (θ)

For τ we need a prior distribution function that describes a random variable that can

take on M values ranging from 2 to T . Here we will use a “flat” prior for this purpose:

Pr (τ) =
1

C

where C is the number of possible ways to choose M ordered values ranging from 2 to

T :

C =

(
T − 1

M

)

One could place additional prior information. For example you might want to restrict

3



the break to not occur in the first or last r% of the sample. Or, you might want to

enforce there is at least p% of the sample between breaks.

• Posterior Density

The posterior density is:

p (θ, τ |Y )

This can be sampled using a Gibbs Sampler:

1. Draw from p (θ|τ, Y )

2. Draw from Pr (τ |θ, Y )

• The first step is a draw from a model with the addition of dummy variables that

capture structural breaks at known break dates. If you knew how to sample θ without

structural breaks it will usually be simple to extend this sampler to include structural

breaks at known break dates.

• Here we will focus on the second step.

Drawing from Pr (τ |θ, Y )

Using Bayes Rule:

Pr (τ |θ, Y ) ∝ p (Y |τ, θ)Pr (τ |θ)

Inserting our prior for τ , this can be written as:

Pr (τ |θ, Y ) ∝ p (Y |τ, θ) 1(
T−1
M

)
So:

Pr (τ |θ, Y ) ∝ p (Y |τ, θ)
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This is very simple - it says that the posterior probability that the break dates are at

τ , conditional on θ, is proportional to the likelihood function evaluated at that value

of τ .

Because this is a discrete distribution, it is simple to recover the summing constant as:

1∑
τ∈Ξ

p (Y |τ, θ)

where Ξ represents the set of C possible values for τ . So:

Pr (τ |θ, Y ) =
p (Y |τ, θ)∑

τ∈Ξ

p (Y |τ, θ)

• We can then sample τ from this discrete distribution

• The Bayesian approach to structural breaks is nice for a number of reasons. One in

particular is that it provides a posterior distribution for τ , which gives us not only a

point estimate but a measure of uncertainty about τ . The other is that we do marginal

likelihood analysis to evaluate evidence for the number and type of structural breaks,

even when competing models are non-nested. Classical measures of uncertainty about

structural break dates and tests of structural breaks are often hard to compute.

• One potential problem with the above sampler is that C can be quite large. For

example, if T = 200 and M = 2 then we have over 19,000 different combinations of

break dates to check. The likelihood function must be computed for each of these

every time a new τ is drawn. This can be very slow, although efficient coding can

help tremendously. For example, using matrix algebra to avoid looping over the C

combinations is very important.

• An alternative sampler was suggested by Wang and Zivot (2000, JBES). Here, the
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Gibbs sampler is expanded so that each element of τ becomes a block of the sampler.

So, the Gibbs Sampler becomes:

1. Draw from p (θ|τ, Y )

2. Draw from Pr
(
τ 1|τ 6=1, θ, Y

)
3. Draw from Pr

(
τ 2|τ 6=2, θ, Y

)
4. Draw from Pr

(
τ 3|τ 6=3, θ, Y

)
5. .

6. .

7. Draw from Pr
(
τM |τ 6=M , θ, Y

)
• What is Pr

(
τ i|τ 6=i, θ, Y

)
? Using calculations similar to what we used above, we see:

Pr
(
τ i|τ 6=i, θ, Y

)
=

p (Y |τ, θ)∑
τ∈χ

p (Y |τ i, τ 6=i, θ)

where χ is the set of J possible places to put τ i, conditional on the placement of all

the other break dates τ 6=i. J will be less than T . Thus, a draw of τ using the above

procedure will involve less than M ∗ T evaluations of the likelihood function, which

could be substantially less than C.

• The drawback of this approach is that by drawing each break date conditional on the

others, this sampler will be more likely to get stuck on one set of break dates. Thus

it will be less efficient. I would recommend using the approach of drawing τ jointly

unless C becomes too large to handle in a reasonable amount of time.

• As a specific example of a structural break model, we will consider a linear regression

model with structural breaks in intercept, slope and disturbance variance. This is

written as:
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Y = Xβt + ε,

where Y = (y1, y2, · · ·, yT )′ represents T observations of a dependent variable, X =

[X1, X2, · · ·, Xk] is an N × k matrix holding the T observations of the k dependent

variables, and ε = (ε1, ε2, . . . , εT )′, where:

εt ∼ N
(
0, h−1

t

)

Finally, for the structural break model:

βt = β0D0t + β1D1t + · · ·+ βMDMt

ht = h0D0t + h1D1t + · · ·+ hMDMt

where Dit is a function of the break dates τ =
(
τ 1, τ 2, . . . , τM

)′
as defined above.

• The parameters of the model are then β =
(
β0, β1, . . . , βM

)′
, h =

(
h0, h1, . . . , hM

)′
and

τ .

• The following matrix definitions will prove useful:

Di = (Di1, Di2, . . . , DiT )′ , i = 0, . . . ,M

X̃ = [(X1 ·D0) (X2 ·D0) . . . (Xk ·D0) . . . (X1 ·DM)(X2 ·DM) . . . (Xk ·DM)]

where · indicates the Hadermand product (element by element multiplication).

H = (h1, h2, . . . , hT )′
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Σ−1 = diag(H)

• Priors

p (β, h, τ) = p (β)
M∏
i=1

p (hi) p (τ)

β ∼ N (µ, V )

hi ∼ Gamma (m, v)

Pr (τ) =
1

C

C =

(
T − 1

M

)

where we are using the second formulation of the Gamma density described in the

“Review of Important Probability Density Functions” notes.

• Posterior Density

The posterior density is:

p (β, h, τ |Y,X)

This can be sampled using a Gibbs Sampler:

1. Draw from p (β|h, τ, Y,X)

2. Draw from p (h|β, τ, Y,X)
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3. Draw from Pr (τ |β, h, Y,X)

• Sampling p (β|h, τ, Y,X):

Using Bayes Rule we have:

p (β|h, τ, Y,X) ∝ p (Y |β, h, τ,X) p (β|h, τ,X)

p (β|h, τ, Y,X) ∝ p (Y |β, h, τ,X) p (β)

where:

p (Y |β, h, τ,X) = (2π)(−T/2)
T∏
t=1

h
1/2
t exp

[(
Y − X̃β

)′
Σ−1

(
Y − X̃β

)]

Plugging in the equation for the prior and likelihood function, and doing some rear-

ranging, gives us:

β|h, Y,X ∼ N
(
µ̄, V̄ −1

)
where:

V̄ = V −1 + X̃ ′Σ−1X̃

µ̄ = V̄ −1
(
V −1µ+ X̃ ′Σ−1Y

)

We can then sample β from this multivariate Normal distribution.

• Sampling p (h|β, τ, Y,X):

Using derivations similar to those in our discussion of the linear regression model, we

can show that:

p (h|β, τ, Y,X) = p
(
h0|β, τ, Y,X

)
p
(
h1|β, τ, Y,X

)
. . . p

(
hM |β, τ, Y,X

)
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where:

hi|β, τ, Y,X ∼ Gamma (m, v)

where:

v = T i + v

m =
v(

Y i − X̃ iβ
)′ (

Y i − X̃ iβ
)

+ v
m

where Y i and X̃ i are the rows of Y and X̃ corresponding to when Dit = 1 and T i is

the number of periods for which Dit = 1.

• We can then obtain a draw from p (h|β, τ, Y,X) by taking M + 1 independent draws

from hi|β, τ, Y,X ∼ Gamma (m, v), i = 0, . . . ,M .

• Sampling Pr (τ |β, h, Y,X):

• Following the discussion of the general structural break model, we have:

Pr (τ |β, h, Y,X) =
p (Y |τ, β, h,X)∑

τ∈Ξ

p (Y |τ, β, h,X)

where, from our earlier discussion:

p (Y |β, h, τ,X) = (2π)(−T/2)
T∏
t=1

h
1/2
t exp

[(
Y − X̃β

)′
Σ−1

(
Y − X̃β

)]

Thus, we can calculate the C discrete probabilities that make up Pr (τ |β, h, Y,X). We

can then sample from this distribution.
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3 Exercise: Linear Regression Model with Two Struc-

tural Breaks

In the dropbox you will find a zipped collection of files called “Linear Regression with

Structural Breaks.zip.” This implements the Gibbs sampler for a 2-state Markov-switching

AR(1) model. It also computes the marginal likelihood using the approach of Chib (1995).

Work with these files to make sure you understand what they do. Pay particular attention

to the marginal likelihood calculation, which uses a reduced Gibbs run. Suggested exercises

include:

1. Add in some MCMC diagnostics to the program and assess the convergence of the

sampler.

2. Play around with the true data generating process and see how the Bayesian estimation

performs.

3. Put a restriction on the estimated model and use marginal likelihoods to evaluate the

posterior probability of the unrestricted vs. restricted model.

4 Markov-Switching Model

• In the scale mixture model, we had a very particular example of a mixture of nor-

mals distribution. The disturbance term for a linear regression followed a mixture of

normals, where the different normal distributions varied only in the variance of the

density, and each disturbance term had its own mixture.

• We could also consider a more general mixture of normals, where both the mean and

variance of each observations differs, and which mixture is relevant for each observa-

tion is unknown to the econometrician. A popular example of this is the Markov-

Switching Model. In a (Gaussian) Markov-switching model, each observation comes
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from one of N different normal densities. We will consider the specific example of a

Markov-switching regression model in which there are N = 2 regimes:

yt = x′tβSt + εt (1)

εt ∼ i.i.d.N(0, h−1
St

)

where yt is scalar, xt is a k×1 vector of observed exogenous or predetermined explana-

tory variables, which may include lagged values of yt, and St ∈ {0, 1} is an integer

valued variable indicating which of 2 regimes is active at time t. Regimes differ in

both the intercept and slope parameters collected in βSt , as well as in the conditional

variance parameter h−1
St

.

• Another, equivalent, way to write this model is to say that Y = (y1, y2, . . . , yT )′ is a

mixture of two different normal densities:

1. N
(
x′tβ0, h

−1
0

)
2. N

(
x′tβ1, h

−1
1

)
• The regime indicator variable, St, tells us which of these two mixtures yt comes from.

In a Markov-switching model, we treat St as unobserved, but we assume that it follows

an N -state Markov process with transition probabilities pji = Pr (St = j|St−1 = i).

For our specific example of a 2-state process, we have four transition probabilities, p00,

p01 = 1− p00, p11, p10 = 1− p11

• The parameters of the model will be then be θ = (β, h, P )′,

where β = (β0, β1)′, h = (h0, h1)′, and P = (p00, p11)′,

• Priors
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• Our prior will take the form:

p (β, h, P ) = p (β)
1∏
i=0

p (hi) p(p00)p(p11)

where:

β ∼ N (µ, V )

hi ∼ Gamma (mi, vi)

p00 ∼ Beta
(
α0

1, α
0
2

)

p11 ∼ Beta
(
α1

1, α
1
2

)
• Posterior Density

The posterior density is:

p (β, h, P |Y,X)

• where Y = (y1, y2, . . . , yT )′ and X is the T × k matrix with the kth column holding the

T observations for the kth independent variable. This posterior can be sampled via a

Gibbs Sampler with three blocks: β, h, P and S = (S1, S2, . . . , ST )′. Incorporating S

as part of the sampler is an example of data augmentation. Specifically, we will sample

iteratively from:

1. p (β|h, P, S, Y,X)

2. p (h|β, P, S, Y,X)
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3. p (P |β, h, S, Y,X)

4. p (S|β, h, P, Y,X)

• Sampling from p (β|h, P, S, Y,X)

• p (β|h, P, S, Y,X) will be similar to the structural break model discussed previously.

• Define:

X̃ = [(X · (ιT − S)) (X · S)]

where ιT is a T × 1 vector of ones, and · indicates the Hadermand product (element

by element multiplication).

H = (h0 · (1− S) + h1 · S)

Σ−1 = diag(H)

Using similar calculations to previous models we have considered gives us:

β|h, P, S, Y,X ∼ N
(
µ̄, V̄ −1

)

where:

V̄ = V −1 + X̃ ′Σ−1X̃

µ̄ = V̄ −1
(
V −1µ+ X̃ ′Σ−1Y

)

We can then sample β from this multivariate Normal distribution.

• Sampling p (h|β, P, S, Y,X):
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Using derivations similar to those in our discussion of the linear regression model, we

can show that:

p (h|β, P, S, Y,X) = p
(
h0|β, P, S, Y,X

)
p
(
h1|β, P, S, Y,X

)

where:

hi|β, P, S, Y,X ∼ Gamma (mi, vi)

where:

vi = T i + vi

mi =
vi(

Y i − X̃ iβ
)′ (

Y i − X̃ iβ
)

+ vi
mi

where Y i and X̃ i are the rows of Y and X̃ corresponding to when St = i and T i is the

number of periods for which St = i.

• We can then obtain a draw from p (h|β, P, S, Y,X) by taking 2 sequential independent

draws from hi|β, P, S, Y,X ∼ Gamma (mi, vi), i = 0, 1.

• Sampling from p (P |β, h, S, Y,X)

Applying Bayes Rule:

p (P |β, h, S, Y,X) ∝ p (Y, S|β, h, P,X) p (P |β, h,X)

Because of the independence of the prior density we have:

p (P |β, h, S, Y,X) ∝ p (Y, S|β, h, P,X) p (p00) p (p11)
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Applying the law of total probability:

p (P |β, h, S, Y,X) ∝ p (Y |β, h, P, S,X) p (S|β, h, P,X) p (p00) p (p11)

Now, conditional on β, h, P, S and X, the density for Y does not depend on p. Thus:

p (P |β, h, S, Y,X) ∝ p (S|β, h, P,X) p (p00) p (p00)

Next:

p (S|β, h, P,X) = p (S|P )

since S does not depend on the conditional mean or variance parameters of the regres-

sion model. The Markov property of S means we can factor this density as follows:

p (S|β, h, P,X) = p (S1|P )
T∏
t=2

p (St|St−1, P )

where:

p (St|St−1, P ) = pSt−1St

Define cij as the number of times that St switches from i to j over the sample period

t = 2, . . . , T . Then:

p (S|β, h, P,X) = p (S1|P ) pc0000 (1− p00)c01pc1111 (1− p11)c10

Plugging in the equations for the Beta prior densities, we then have:

p (P |β, h, S, Y,X) ∝

p (S1|P )pc0000 (1− p00)c01pc1111 (1− p11)c10
(
p
α0
1−1

00 (1− p00)α
0
2−1
)(

p
α1
1−1

11 (1− p11)α
1
2−1
)
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The term p (S1|P ) makes this density non-standard, and it would require a Metropolis-

Hastings step to sample it directly. However, the usual practice is to ignore this density

of the initial observation (set it equal to one) which is in the spirit of conditional

estimation often used with autoregressive processes. This will have little effect on

results for a reasonably large sample size. If we do this, we have:

p (P |β, h, S, Y,X) ∝ p
c00+α0

1−1
00 (1− p00)c01+α0

2−1p
c11+α1

1−1
11 (1− p11)c10+α1

2−1

• This is the product of the kernels for two beta densities, one describing p00 and one

describing p11. Thus, p (p|β, h, S, Y,X) is given by:

p (P |β, h, S, Y,X) = p (p00|β, h, S, Y,X) p (p11|β, h, S, Y,X)

where:

p00|β, h, S, Y,X ∼ Beta(c00 + α0
1, c01 + α0

2)

p11|β, h, S, Y,X ∼ Beta(c11 + α1
1, c10 + α1

2)

• We can then obtain a draw from p (P |β, h, S, Y,X) by taking 2 sequential independent

draws from a Beta(c00 + α0
1, c01 + α0

2) and a Beta(c11 + α1
1, c10 + α1

2).

• Sampling from Pr (S|β, h, P, Y,X)

17



Using the law of total probability, this density can be factored as follows:

Pr (S|β, h, P, Y,X) = Pr (ST |β, h, P, Y,X)
T−1∏
t=1

Pr (St|St+1, St+2, . . . , ST , β, h, P, Y,X)

Pr (S|β, h, P, Y,X) = Pr (ST |β, h, P, Y,X)
T−1∏
t=1

Pr (St|St+1, β, h, P, Y,X)

Pr (S|β, h, P, Y,X) = Pr (ST |β, h, P, Y,X)
T−1∏
t=1

Pr (St|St+1, β, h, P, Yt, Xt)

where Yt and Xt contain the elements of Y and X from through period t. The first

equation follows from the law of total probability. The validity of moving to the second

and third equation relies on the Markov property of St. Conditional on St+1 there is

no information about St contained in St+2, . . . , ST or in yt+1, . . . , yT .

• This factorization gives us an approach to draw from Pr (S|β, h, P, Y,X):

1. Draw S
[g]
T from Pr (ST |β, h, P, Y,X). This draw can be generated by drawing u ∼

U(0, 1) and setting S
[g]
T = 1 if U < Pr (ST = 1|β, h, P, Y,X) and S

[g]
T = 0 otherwise.

2. Draw S
[g]
T−1 from Pr

(
ST−1|S[g]

T , β, h, P, YT−1, XT−1

)
.

...

T. Draw S
[g]
1 from Pr

(
S1|S[g]

2 , β, h, P, Y1, X1

)
.

S[g] =
(
S

[g]
1 , S

[g]
2 , . . . , S

[g]
T

)′
will then be a draw from Pr (S|β, h, P, Y,X).

• To implement this procedure, we need to compute the various probabilities in the steps

above. As a first step to do this, we need to compute the “filtered” state probabilities,

Pr (St = i|β, h, P, Yt, Xt), i = 0, 1, for t = 1, . . . , T . This can be done using the filter

given in Hamilton (1989, Econometrica). Numerous textbook treatments of this filter

exist, with a particularly useful example being Kim and Nelson (1999). My survey
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paper on Markov-switching models also covers the Hamilton (1989) filter in detail.

This is available here:

http://pages.uoregon.edu/jpiger/research/published-papers/piger_2009_ecss.

pdf

• Once we have these filtered probabilities, we can then compute each of the probabilities

above as follows:

1. The last step of Hamilton’s filter gives us Pr (ST = i|β, h, P, Y,X), i = 0, 1.

2. For t = T-1 through 1: Compute Pr
(
St = i|S[g]

t+1, β, h, P, Yt, Xt

)
as follows. Apply

Bayes Rule:

Pr
(
St = i|S[g]

t+1, β, h, P, Yt, Xt

)
∝Pr

(
S

[g]
t+1|St = i, β, h, P, Yt, Xt

)
Pr (St = i|β, h, P, Yt, Xt)

The first term on the right hand side is the transition probability, p
iS

[g]
t+1

while the

second is the filtered state probability, which we have from the Hamilton (1989) filter.

As this is a discrete distribution, we can then recover the probability as follows:

Pr
(
St = i|S[g]

t+1, β, h, P, Yt, Xt

)
=

p
iS

[g]
t+1

Pr (St = i|β, h, p, Yt, Xt)

1∑
j=0

p
jS

[g]
t+1

Pr (St = j|β, h, p, Yt, Xt)

• Normalization: A final note about Markov-switching models. Like all models with

mixture distributions where the assignment of mixtures to observations is unknown,

there is a “labeling” problem in that we could switch the names of the regimes (0 to

1 and 1 to 0) as well as the parameters (e.g. β0 to β1) and the likelihood function

would be unchanged. A normalization restriction is required to nail down the labeling

of regimes. For example, you might restrict h1 < h0, which labels regime 1 as the “high

variance” regime.
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5 Exercise: Two State Markov Switching AR(1) Model

In the dropbox you will find a zipped collection of files called “Markov Switching Autoregres-

sion.zip.” This implements the Gibbs sampler for a 2-state Markov-switching AR(1) model.

Work with these files to make sure you understand what they do. Suggested exercises include:

1. Add in some MCMC diagnostics to the program and assess the convergence of the

sampler.

2. Play around with the true data generating process and see how the Bayesian estimation

performs.

3. Extra, Extra Credit: Instead of generated data, fit the model to some actual macroe-

conomic data (e.g. the growth rate of real GDP or payroll employment).
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