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a b s t r a c t

We present a new approach to trend/cycle decomposition of time series that follow regime-
switching processes. The proposed approach, which we label the ‘‘regime-dependent steady-state’’
(RDSS) decomposition, is motivated as the appropriate generalization of the Beveridge and Nelson
decomposition [Beveridge, S., Nelson, C.R., 1981. A new approach to decomposition of economic time
series into permanent and transitory components with particular attention to measurement of the
business cycle. Journal of Monetary Economics 7, 151–174] to the setting where the reduced-form
dynamics of a given series can be captured by a regime-switching forecasting model. For processes in
which the underlying trend component follows a randomwalk with possibly regime-switching drift, the
RDSS decomposition is optimal in a minimummean-squared-error sense and is more broadly applicable
than directly employing an Unobserved Components model.
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1. Introduction

Trend/cycle decomposition of integrated economic time series
is important for both theoretical and statistical reasons. When an
appropriate forecasting model is available, one general approach
to trend/cycle decomposition is themethodpresented in Beveridge
andNelson (1981), or BN hereafter. The BN decomposition extracts
ameasure of trend fromagiven series using a long-horizon forecast
based on the forecasting model, an approach that has been argued
for in Rotemberg and Woodford (1996) and Cogley (2001), among
others, and used in countless applications in the literature.
In recent years there has been an explosion of work using

nonlinear forecasting models to describe economic time series.
Beginning with Hamilton (1989), models with Markov-switching
parameters have been particularly popular. While the BN decom-
position can be calculated for such models using the techniques
detailed in Clarida and Taylor (2003) and Kim (2006), the resulting
measures of trend and cycle are often at odds with the underlying
regime-switching processes. As one example, the BN decomposi-
tion always extracts a trend component with a constant average
growth rate, while many regime-switching processes explicitly al-
low for shifts in the average growth rate across different regimes
(e.g., Lam (1990)).
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In this paper we present a new approach to trend/cycle decom-
position of regime-switching processes, which we refer to as the
regime-dependent steady-state (RDSS) decomposition. We moti-
vate the RDSS decomposition as the appropriate generalization of
the BN decomposition to the setting where the reduced-form dy-
namics of a given series can be captured by a regime-switching
forecasting model. In particular, our approach is based on the cen-
tral premise of the BN decomposition, namely that a long-horizon
forecast can be used to eliminate predictable momentum implied
by the cyclical component of an integrated series and thus extract a
measure of its trend.However,we show that the long-horizon fore-
cast should be constructed under the assumption that the series
remains inside of a particular regime (hence the label ‘‘regime de-
pendent’’), rather than averaging across all regimes, as is donewith
the BN decomposition. Meanwhile, for linear forecastingmodels in
which everything collapses to one regime, the RDSS andBNdecom-
positions are equivalent.
It is useful to compare the RDSS and BN decompositions to

direct estimation of trend and cycle using an Unobserved Com-
ponents (UC) model. As shown in Morley et al. (2003), Kalman
filter estimates for linear Gaussian UC models with random walk
trends are equivalent to BN measures of trend and cycle based on
corresponding reduced-form forecasting models. In this case, be-
cause the Kalman filter estimates and BN measures are equal to
conditional expectations of the underlying trend and cycle, they
provide optimal estimates in a ‘‘minimum mean-squared-error’’
sense. However, the equivalence between the UC approach and
the BN decomposition breaks down for UC models with regime-
switching parameters, of which there are many examples in the
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literature (e.g., Lam (1990) and Kim and Nelson (1999)). In partic-
ular, while filtered estimates based for the UC models are equal to
conditional expectations of the underlying trend and cycle, the BN
measures of trend and cycle based on the corresponding reduced-
form regime-switching forecasting models are biased in the pres-
ence of a regime-switching drift for the underlying trend and/or a
non-zero mean for the underlying cycle. By contrast, as long as the
underlying trend follows a random walk with a possibly regime-
switching drift, the RDSS decomposition provides measures of
trend and cycle that are equivalent to estimates from the UC ap-
proach and are, therefore, optimal. Meanwhile, the RDSSmeasures
are equal to conditional expectations of the underlying trend and
cycle for a broader range of regime-switching processes, not just
those that correspond to identified or finite-order UC models.
The rest of the paper is organized as follows. The next section

begins by describing the regime-switching processes for which
our approach is appropriate and discusses the problems with the
BN decomposition for such processes. We then present the details
of the RDSS decomposition, compare it to the UC approach, and
address issues surrounding the identification of the mean of the
cycle. Section 3 provides some brief conclusions.

2. Method

2.1. Underlying regime-switching processes

To explain our proposed approach to trend/cycle decompo-
sition, it is most useful to start with the true data generating
processes for which it would be appropriate. We will discuss
regime-switching forecasting models that can capture such pro-
cesses later. In terms of possible underlying processes, our ap-
proach is based on the assumption that a time series of interest
{yt}∞t=−∞ is the sum of a trend, τt , and a cycle, ct :

yt = τt + ct . (1)

We are interested in the case where the parameters governing the
evolution of both the trend and the cycle can take on different
values inN distinct regimes,with the regimes indexed by a discrete
state variable, denoted St = i, i = 1, . . . ,N . For simplicity, we
assume that St follows an unobserved Markov process with a fixed
transition matrix, an assumption that is consistent with much of
the applied literature.1
We define the trend as the permanent component of the time

series process, which is given by the accumulation of permanent
innovations:

τt =

∞∑
j=0

η∗t−j, (2)

where the mean of the permanent innovations is possibly regime
switching, so that

η∗t = η̄St + ηt , ηt ∼ i.i.d.(0, σ 2η ). (3)

These innovations are ‘‘permanent’’ in the sense that their impact
on the level of the time series is not expected to be reversed.

1 The assumption of a fixed transition matrix could be relaxed to allow for
time-varying transition probabilities based on exogenous variables, as in Diebold
et al. (1994) and Filardo (1994). Also, it would be straightforward to consider
an observable state process based on exogenous variables, such as in the trivial
case of a dummy variable. However, processes in which the regime depends on
realized values of endogenous variables, such as so-called ‘‘self-exciting threshold
autoregressive’’ models (e.g., Potter (1995)), introduce some complications in terms
of the evaluation of regime-dependent long-horizon forecasts. Adapting the basic
approach developed in this paper to such processes would provide an interesting
extension that we leave for future work.
Correspondingly, the trend process in (2) and (3) can be thought
of as a random walk with regime-switching drift component—
i.e., τt = η̄St + τt−1 + ηt .
The cycle is then the transitory component of the time series

process, which represents a weighted average of past transitory
innovations:

ct =
∞∑
j=0

ψj,tω
∗

t−j, (4)

where ψ0,t = 1. There are two possible sources of regime
switching in the cycle. First, as was the case with permanent
innovations, the mean of the transitory innovations can be regime
switching:

ω∗t = ω̄St + ωt , ωt ∼ i.i.d.(0, σ 2ω). (5)

Second, themoving average (MA) coefficients in (4) can depend on
the current and past regimes:

ψj,t = ψj (St , St−1, . . .) . (6)

Meanwhile, to give the notion of ‘‘transitory innovations’’meaning,
we assume that the MA coefficients in (6) are always absolutely
summable,

∑
∞

j=0

∣∣ψj,t ∣∣ < ∞, and their dependence on past
regimes is described by a short-memory process. Thus, conditional
on remaining inside of a regime, the cyclical component becomes
a covariance-stationary and ergodic process with a regime-
dependent mean, E

[
ct | {St = i}∞−∞

]
. Finally, in at least one regime,

which we label regime i∗, we assume that ω̄i∗ = 0. This final
assumption identifies the unconditional mean of the cycle, and is
discussed in further detail in Section 2.5.
There are two aspects of this regime-switching process that

are worth highlighting. First, from (2) and (3), it is apparent that
the trend depends only on current and past shocks and regimes
and is, therefore, uniquely determined at time t . In other words,
future regimes contain no additional information about the current
trend above and beyond current and past regimes and information
available at time t . Second, given the presence of ω̄St in (5), the
cycle is not necessarily unconditionally mean zero.
It should be emphasized that the assumptions in (3), (5) and (6)

are quite general. First, the innovations to the trend and cycle can
be correlated due to common regime switching and/or correlation
between the i.i.d. shocks:

Cov (ηt , ωt) = σηω. (7)

Second, the overall process can be regime switching for a variety of
reasons. In particular, the regime switching can be in terms of the
dynamics, the permanent innovation, the transitory innovation, or
any combination of these.2

Despite this general setup, our proposed approach to identify-
ing and estimating the trend and cycle for such regime-switching
processes requires no prior assumptions about the parametric
structure of the cyclical component, the correlation between per-
manent and transitory innovations, or which sources of regime
switching apply for a given time series of interest. Instead, our
approach requires only the specification of a forecasting model
for the first differences, ∆yt , of the integrated time series and
is optimal in a minimum mean-squared-error sense given any

2 It is also possible to allow the variances and covariance of the permanent and
transitory innovations to be regime switching. Thus, the shocks do not have to be
identically distributed over time and their distributions can depend on the regime.
However, they must be martingale difference sequences. We ignore this extension
for simplicity of presentation.



222 J. Morley, J. Piger / Journal of Econometrics 146 (2008) 220–226
such model that captures the reduced-form dynamics of the un-
derlying process.3 For example, suppose the trend component
has a two-state regime-switching drift and the cyclical compo-
nent follows a second-order autoregressive (AR(2)) process. It is
straightforward to show that the reduced-form dynamics take the
following second-order regime-switching autoregressive moving-
average (ARMA(2, 2)) form: (1− φ1L− φ2L2)

(
∆yt − µSt

)
= (1+

θ1L + θ2L2)et , et ∼ i.i.d.(0, σ 2e ) and µSt = µ1 · I (St = 1) + µ2 ·
I (St = 2), where I (·) is the indicator function that equals one if
the argument is true and zero otherwise. Thus, we can directly cap-
ture the reduced-form process with a regime-switching ARMA(2,
2) forecasting model. Of course, in this example, we could also
have considered an Unobserved Components (UC) model that cap-
tures the specified trend and cyclical components and estimated
it directly. However, as discussed in more detail in Section 2.4, an
identified or finite-order UC model is not always available for the
underlying process presented in (1)–(7).

2.2. The Beveridge–Nelson decomposition

Whenwe have an appropriate reduced-form forecasting model
for ∆yt , a useful approach to identifying and estimating the trend
and cycle of yt is the decomposition suggested by Beveridge and
Nelson (1981). The idea behind the BN decomposition is that,
because the cyclical component is ergodic, a forecast of the time
series into the infinite future will no longer be influenced by the
expected cyclical momentum that exists at time t . Thus, such a
forecast should reveal the influence of the permanent component
on the time series, and can be used to estimate the trend.4
In precise terms, the BN measure of trend is the long-horizon

forecast of a time series, adjusted to account for any future
deterministic drift:

τ̂ BNt ≡ limj→∞
{
EF
[
yt+j|Ωt

]
− j · EF [∆yt ]

}
, (8)

where EF [·] is the expectations operator with respect to the fore-
casting model and Ωt is the set of relevant and available infor-
mation observed up to time t. To see how the BN decomposition
works, we can start with a simplified version of the process in
(1)–(7) without regime-switching parameters, so that η̄i = η̄ and
ω̄i = 0, ∀i. Letting E [·] specifically denote the expectations op-
erator with respect to the process, the BN measure of trend, τ̂ BNt ,
will be equal to E [τt |Ωt ] as long as the forecasting model captures
the reduced-formdynamics of the process such that EF

[
yt+j|Ωt

]
=

E
[
yt+j|Ωt

]
. To see this, substitute E [·] for EF [·] in (8) andnote from

(1) that yt+j = τt+j + ct+j in order to re-write the expression for
the BN measure of trend as

τ̂ BNt = limj→∞
{
E
[
τt+j|Ωt

]
− j · E [∆yt ]

}
+ lim
j→∞

{
E
[
ct+j|Ωt

]}
= E [τt |Ωt ]+ lim

j→∞

{
j∑
k=1

E [∆τt+k|Ωt ]− j · E [∆yt ]

}
+ lim
j→∞

{
E
[
ct+j|Ωt

]}
. (9)

In the absence of regime switching, the trend component defined
in (2) and (3) is simply a random walk with drift, so that, for
k > 0, the conditional expectation E [∆τt+k|Ωt ] = η̄. Also,

3 Of course, it should always be acknowledged that if the forecasting model
provides a poor approximation to the reduced-form dynamics of the underlying
process, the inferences about trend and cycle will also be poor.
4 The long-horizon forecast can also be used to define the trend, although there

are some issues with this interpretation of the BN decomposition (see Morley
(2007)).
given the ergodicity of the cyclical component, it is straightforward
to show that the unconditional expectation E [∆yt ] = η̄.
Finally, the ergodicity of the cyclical component along with the
fact that ω̄i = 0, ∀i, guarantees that the limiting conditional
expectation limj→∞

{
E
[
ct+j|Ωt

]}
= 0. Taken together, these

three expectations imply that, in the absence of regime-switching
parameters, the last two terms in (9) drop out and the BNmeasure
of trend is equal to the conditional expectation of the underlying
trend component. See Watson (1986) and Morley et al. (2003) on
this point.
By contrast, when the process for yt has regime-switching

parameters, the last two terms in (9) do not necessarily drop out
and τ̂ BNt does not, in general, equal E [τt |Ωt ], even if E

F
[
yt+j|Ωt

]
=

E
[
yt+j|Ωt

]
. First, in the presence of regime switching in the drift

parameter of the trend component, the conditional expectation
E [∆τt+k|Ωt ] no longer equals the unconditional expectation
E [∆yt ] for all k > 0. This is because information contained
in Ωt about current and past regimes is useful for predicting
future regimes, and thus future changes in the trend. Thus, τ̂ BNt
will be biased by expected future changes in the trend. Second,
in the presence of regime switching, the ergodicity of ct implies
only that the limiting conditional expectation limj→∞ E

[
ct+j|Ωt

]
converges to the unconditional mean of the cyclical component,
which may or may not be zero. Thus, τ̂ BNt will also be biased by the
expected effects of future regime shifts on the level of the cyclical
component.5

2.3. Measuring the trend with a regime-dependent steady state

While the BN decomposition generally fails to provide E [τt |Ωt ]
for the regime-switching processes described in Section 2.1,
the principle of using a long-horizon forecast to eliminate the
influence of the cyclical component can still be used to construct
an alternative decomposition that will yield E [τt |Ωt ]. In this
subsectionwe lay out the details of this alternative decomposition,
which we refer to as the ‘‘regime-dependent steady-state’’ (RDSS)
decomposition.
To begin, given an underlying process that corresponds to

(1)–(7), the appropriate reduced-form forecasting model for
∆yt will involve current and, possibly, lagged values of the
regime indicator variable. To develop our approach, we initially
proceed as if the relevant regimes, given by the vector S̃t ≡
(St , St−1, . . . , St−m)′, were observed in period t . Later, we address
the fact that S̃t is unobserved by marginalizing inferences with
respect to its distribution. For now, we condition on S̃t and on
a particular future sequence of regimes in order to construct a
hypothetical ‘‘regime-dependent’’ j-step forecast of yt+j:

EF
[
yt+j|

{
St+k = i∗

}j
k=1 , S̃t ,Ωt

]
. (10)

In words, (10) is the period t forecast of yt+j given the hypothetical
knowledge that the state processwill enter regime i∗ in period t+1
and remain there through period t + j.
Now, define a regime-dependent long-horizon forecast as

follows:

τ̂ RDSSt

(
S̃t
)
≡ lim
j→∞

{
EF
[
yt+j|

{
St+k = i∗

}j
k=1 , S̃t ,Ωt

]
− j · EF

[
∆yt |

{
St = i∗

}∞
−∞

]}
. (11)

5 In contemporaneous work, Chen and Tsay (2006) present a modification of
the BN decomposition designed to incorporate Markov-switching in the average
growth rate of the trend component. However, their approach does not address the
possibility of regime switching in the cyclical component.
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We can show that τ̂ RDSSt

(
S̃t
)
= E

[
τt |S̃t ,Ωt

]
as long as the

forecasting model captures the reduced-form dynamics of the
process such that EF

[
yt+j|Ωt

]
= E

[
yt+j|Ωt

]
. Again, substituting

E [·] for EF [·] and noting yt+j = τt+j + ct+j, the expression in (11)
can be re-written as

τ̂ RDSSt

(
S̃t
)
= lim
j→∞

{
E
[
τt+j

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ]
− j · E

[
∆yt

∣∣∣{St = i∗}∞−∞ ]}
+ lim
j→∞

E
[
ct+j

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ] . (12)

From Section 2.1, the cyclical component is ergodic inside of each
regime. Thus, the second limit on the right hand side of (12)
converges to the unconditional mean of the cyclical component
inside of regime i∗, which is zero given our assumption that ω̄i∗ =
0.6 Thus, (12) simplifies to

τ̂ RDSSt

(
S̃t
)
= lim
j→∞

{
E
[
τt+j

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ]
− j · E

[
∆yt

∣∣∣{St = i∗}∞−∞ ]} . (13)

The first term on the right-hand-side of (13) can be decomposed as
follows:

E
[
τt+j

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ] = E [τt ∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ]
+

j∑
k=1

E
[
∆τt+k

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ] , (14)

where from the definition of the trend component in (2) and (3),
we can solve for the last term in (14):

j∑
k=1

E
[
∆τt+k

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ]

=

j∑
k=1

E
[
η̄St+k + ηt+k

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ] = j · η̄i∗ . (15)

Then, from (1) to (6), the regime-dependent expectation in the
second term on the right-hand-side of (13) can be decomposed as
follows:

E
[
∆yt

∣∣∣{St = i∗}∞−∞ ] = E [∆τt ∣∣∣{St = i∗}∞−∞ ]
+ E

[
∆ct

∣∣∣{St = i∗}∞−∞ ]
= E

[
η̄St + ηt

∣∣∣{St = i∗}∞−∞ ]+ E
[
∞∑
j=0

ψj (St , St−1, . . .) ω∗t−j

−

∞∑
j=0

ψj (St−1, St−2, . . .) ω∗t−1−j
∣∣∣{St = i∗}∞−∞

]

= η̄i∗ + E

[
∞∑
j=0

ψj
(
i∗, i∗, . . .

)
ω̄i∗ −

∞∑
j=0

ψj
(
i∗, i∗, . . .

)
ω̄i∗

]
= η̄i∗ . (16)

6 It is this convergence that gives the RDSS decomposition its name. In particular,
the ergodicity of the cyclical component inside of each regime ensures that the
regime-dependent long-horizon forecast of the series will no longer be influenced
by the expected cyclical dynamics, and is thus in a ‘‘steady-state’’ in which expected
growth in the series will be determined entirely by expected growth in the trend.
Thus, substituting (14)–(16) into (13) yields

τ̂ RDSSt

(
S̃t
)
= E

[
τt

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ] . (17)

Finally, the Markov property of the state variable ensures that the
sequence of future regimes, {St+k = i∗}

j
k=1, provides no additional

information about the current trend beyond the other conditioning
information in (17). Specifically, from (2) and (3), τt only depends
on current and lagged regimes. Therefore, the only relevance
of knowing the future regimes in (17) would be to provide
information about current and past regimes. However, because
the state variable follows a Markov process, the probability
distribution p (St−1|St , St+1) simplifies to p (St−1|St). Thus, given
the knowledge of St , which is included in the vector S̃t , the future
regimes in {St+k = i∗}

j
k=1 provide no additional information about

current and past regimes. As a result, (17) simplifies to

τ̂ RDSSt

(
S̃t
)
= E

[
τt |S̃t ,Ωt

]
. (18)

In practice, the relevant current and past regimes, S̃t , are not
observed, but need to be integrated out of the right hand side of
(18) to arrive at E [τt |Ωt ]. This can be done using the following
weighted sum:

E [τt |Ωt ] =
∑
S̃t

E
[
τt |S̃t ,Ωt

]
· p
(
S̃t |Ωt

)
, (19)

where p
(
S̃t |Ωt

)
represents the probability distribution of each

possible sequence of relevant current and past regimes. Thus, in
general, the RDSS measure of trend is

τ̂ RDSSt ≡

∑
S̃t

{
τ̂ RDSSt

(
S̃t
)
· pF

(
S̃t |Ωt

)}
, (20)

where pF (·) is the probability distribution with respect to the
forecasting model and the above analysis, demonstrating that
τ̂ RDSSt

(
S̃t
)
= E

[
τt |S̃t ,Ωt

]
directly implies that τ̂ RDSSt = E [τt |Ωt ],

as long as the forecasting model captures the state variable
dynamics such that pF

(
S̃t |Ωt

)
= p

(
S̃t |Ωt

)
. In this case, it can also

be easily shown that ĉRDSSt = E [ct |Ωt ], where ĉRDSSt ≡ yt − τ̂ RDSSt
is the RDSS estimate of the cycle.
It is worth emphasizing the computational simplicity of the

RDSS decomposition. In particular, for each possible S̃t , one need
only compute the quantity in (11), τ̂ RDSSt

(
S̃t
)
, which is simply a

long-horizon forecast of the time series conditional on S̃t , Ωt , and
{St+k = i∗}∞k=1, adjusted to subtract the expected average growth
of the time series in regime i∗ that accumulates over the forecast
horizon. Given the assumption that ω̄i∗ = 0, the calculation of
this adjusted long-horizon forecast is mechanically identical to the
BN decomposition for the conditionally-linear forecasting model
that would be implied by a sequence of known regimes.7 Then,
to arrive at a measure that is equivalent toE [τt |Ωt ], the values of
τ̂ RDSSt

(
S̃t
)
can be averaged, as in (20), using the estimated state

probabilities, pF
(
S̃t |Ωt

)
. In most cases, these probabilities are a

direct by-product of the filter used to estimate the parameters for a
regime-switching forecastingmodel of∆yt . For convenience, Box I
summarizes the mechanics of the RDSS decomposition.

7 In the case of a Gaussian disturbance term for the forecasting model, this BN
decomposition can be easily computed using the analytical approach presented in
Morley (2002).
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τ̂ RDSSt ≡

∑
S̃t

{
τ̂ RDSSt

(
S̃t
)
· pF

(
S̃t |Ωt

)}
,

where τ̂ RDSSt

(
S̃t
)
≡ lim
j→∞

{
EF
[
yt+j|

{
St+k = i∗

}j
k=1 , S̃t ,Ωt

]
− j · EF

[
∆yt |

{
St = i∗

}∞
−∞

]}
Box I. The RDSS Measure of Trend.
We conclude this subsection by noting that the RDSS decompo-
sition is equivalent to the BN decomposition when the forecasting
model for ∆yt does not involve regime switching. In particular, in
the absence of regime switching, the regime indicator variable St
becomes redundant information and is no longer needed. In this
case, the regime-dependent long-horizon forecast in (11) collapses
to the expression in (8) for the BN measure of trend.

2.4. Comparison to the unobserved components approach

A popular approach to extracting estimates of the trend and
cycle from an integrated time series yt is to specify functional
forms for these components directly in a UC model (e.g. Harvey
(1985), Watson (1986) and Clark (1987)). For linear Gaussian
UC models, the Kalman filter can then be used to calculate
EUC [τt |Ωt ], where EUC [·] is the expectations operator with respect
to the UC model. Morley et al. (2003) show that if the trend
component follows a randomwalk with constant drift, the cyclical
component follows a finite-order ARMAprocess, and the UCmodel
is identified and appropriate such that EUC [τt |Ωt ] = E [τt |Ωt ],
then the BN decomposition for the corresponding reduced-form
ARMA forecasting model of ∆yt will also yield EF [τt |Ωt ] =
E [τt |Ωt ], implying that theUC approach andBNdecomposition are
equivalent and optimal in this case.
A similar equivalence exists for the UC approach and the

RDSS decomposition when the UC model has regime-switching
parameters. In particular, several authors, notably Lam (1990)
and Kim and Nelson (1999), have specified UC models for yt
in which the trend and/or cycle are regime switching. For such
models, posterior densities for the trend and cycle will depend
on the entire history of regimes. Thus, even given Gaussian
shocks, exact analytical inference based on the Kalman filter is
computationally infeasible due to the need to keep track of up to
NT possible sequences of regimes,where T is the sample size under
consideration. However, it is possible to use the Gibbs sampler to
compute EUC [τt |Ωt ] numerically (Carter and Kohn, 1994). If the
trend component in the UC model is specified as a random walk
with potentially regime-switching drift, as in (2)–(3), the cyclical
component follows a potentially regime-switching finite-order
ARMAprocess, and theUCmodel is identified and appropriate such
that EUC [τt |Ωt ] = E [τt |Ωt ], then the RDSS decomposition for the
corresponding reduced-form regime-switching ARMA forecasting
model of ∆yt will also yield EF [τt |Ωt ] = E [τt |Ωt ], and thus the
UC approach and RDSS decomposition are equivalent and optimal.
By contrast, because the BN decomposition does not generally
produce E [τt |Ωt ] for a regime-switching process, as discussed in
Section 2.2, it is not equivalent to the UC approach, even given the
appropriate reduced-form forecasting model.8
Given that the RDSS decomposition produces identical results

to the UC approach when an identified and appropriate UC model
is available, a reasonable question is whether there is any value
added from using the RDSS decomposition. Beyond computational

8 As implied by the analysis in Section 2.2, the BN decomposition for a regime-
switching forecasting model yields the conditional expectation of the trend only in
the special case that, for the corresponding UC model, the trend is a random walk
with constant drift and the cycle is unconditionally mean zero.
simplicity, the primary benefit of the RDSS decomposition is
that it is appropriate for a broader range of regime-switching
processes than the UC approach. First, there are some relevant
processes that correspond to (1)–(7) for which UC models are not
identified. In this case, the RDSS decomposition will be robust
in the sense that the RDSS decomposition will provide optimal
estimates of trend and cycle when applied to forecasting models
that capture the reduced-form dynamics of the set of underlying
unidentified processes. Second, there are also relevant processes
that correspond to (1)–(7) for which the reduced-form dynamics
can be captured by flexible, yet tightly parameterized regime-
switching forecasting models, while the dynamics cannot be
captured by finite-order UC models.
To illustrate the robustness of the RDSS decomposition,

consider simple ‘‘random-walk-plus-noise’’ UC models for yt ,
which correspond toMA(1) reduced-form dynamics for∆yt . These
UC models are unidentified in the sense that the correlation
between the shocks to trend and cycle cannot be estimated.
In such a setting, a standard approach is to consider only one
of the possible UC models by making an assumption about the
correlation parameter (usually that it is zero). However, such an
assumption can place false restrictions on the parameters related
to the autocovariance structure of the process (see Nelson and
Plosser (1982) and Morley et al. (2003), on this point). Instead,
by directly estimating the reduced-form MA(1) forecasting model
and applying the RDSS decomposition (which would just be the
BN decomposition given the linear MA(1) model in this simple
example), the parameter estimates will be consistent and the
inferences about trend and cycle will be optimal for the range of
unidentified random-walk-plus-noise processes. In this sense, the
RDSS decomposition provides a robust approach to estimation of
the trend and cycle when UC parameters are not identified.
To illustrate the relative flexibility of the RDSS decomposition

compared to the UC approach, note that identified UC models
correspond to reduced-form models for ∆yt that include MA
dynamics, rather than just AR dynamics only. Thus, unlike the RDSS
decomposition, the UC approach implicitly limits the reduced-
form dynamics that can be considered to the case of more
complicated ARMA models.9 Restricting the class of reduced-form
models in this way is undesirable for at least two reasons. First,
many popular regime-switching models in the literature include
only AR dynamics (e.g. Hamilton (1989), Hansen (1992) and Garcia
and Perron (1996)). Ruling out such models from consideration
is problematic if their popularity reflects, at least in part, their
empirical relevance. Second, UC models and their corresponding
reduced-formARMAmodels are often difficult to estimate andmay
not be good forecasting models in practice. Estimation difficulties
arise due toweak identification in the presence of near cancellation

9 It might seem counterintuitive that an ARMA structure does not nest the
simpler AR structure. However, given an identified UCmodel, theMA parameter for
the corresponding reduced-form model is always nonzero, except in the limiting
case of no cyclical component. Of course, in this limiting case, making inference
about the trend is as simple as observing the series. Meanwhile, a reduced-form AR
model provides a parsimonious way to capture the infinite-order MA structure for
the first-differences of an integrated time series that would be implied by a cyclical
component with a general infinite-order MA structure.
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of roots in the AR and MA polynomials.10 Forecasting failures
occur because, as pointed out by Campbell and Mankiw (1987),
estimated ARMA models (and, implicitly, UC models) sometimes
massively overstate the long-horizon predictability inherent in an
integrated process due to a pile-up problem for the likelihood at
a unit MA root. This is a serious drawback for such models, as the
main criterion for a model to be appropriate for use in a model-
based decomposition is whether it credibly captures the actual
predictability inherent in a given integrated time series process.
Another advantage of the RDSS decomposition over the UC

approach that is worth mentioning is the ease with which non-
Gaussian shocks can be accommodated. In particular, the parame-
ters of regime-switching AR forecastingmodelswith non-Gaussian
errors are relatively straightforward to estimate, as the likeli-
hood function can be computed with minor modifications to ex-
isting recursive filters. Long-horizon forecasts are also relatively
straightforward to calculate for such models. By contrast, both
the construction of the likelihood function and the calculation of
EUC [τt |Ωt ] for UC models with non-Gaussian shocks (regardless
of the presence of regime-switching) present substantial compu-
tational challenges, requiring the use of nonlinear filtering tech-
niques (e.g. Kitagawa (1987) and Gordon et al. (1993)). This is
relevant, as there is evidence for non-Gaussian shocks in many
macroeconomic and financial time series (e.g. Hamilton (2005)).

2.5. Identifying the mean of the cycle

The RDSS decomposition relies on the assumption that ω̄i∗ = 0,
which implies that the regime-dependentmean of the cycle is zero
in regime i∗, where the regime is specified by the researcher. This
assumption was necessary to identify the unconditional mean of
the cycle. To see this, note that, while the long-horizon forecast
in (11) guarantees that the cyclical component has converged to
its regime-dependent mean, it does not identify the level of this
mean. Also, note that the differences in regime-dependentmeans of
the cycle are identified by (11). In particular, suppose we consider
an alternative version of (11), where instead of assuming that the
process entered and remained in regime i∗ beginning in period
t + 1,we assume that the process entered and remained in a
different regime, labeled j∗. It is straightforward to show from (12)
that the difference between (11) with regime i∗ and its alternative
version with regime j∗ simplifies to

lim
j→∞

{
E
[
ct+j

∣∣∣{St+k = i∗}jk=1 , S̃t ,Ωt ]}
− lim
j→∞

{
E
[
ct+j

∣∣∣{St+k = j∗}jk=1 , S̃t ,Ωt ]} , (21)

which is simply the difference in the mean of the cycle in regime
i∗ from the mean of the cycle in regime j∗. Thus, this difference is
readily calculable using (11) for different regimes, meaning that, if
the mean of the cycle in regime i∗ is zero, it is possible to identify
the regime-dependent mean of the cycle in all other regimes, and
thus the unconditional mean of the cycle.
Of course, this identification requires the choice by the

researcher of which regime to label i∗, and thus in which
regime the cyclical component has a zero mean. It is worth
noting that this choice is also required in the UC approach
to trend/cycle decomposition for regime-switching processes. In
particular, UC models require explicit functional forms for the
cyclical component in each regime, with the overall mean of the
cycle only identified by fixing the mean of the cyclical component
in one of the regimes.

10 See Nelson and Startz (2007) on weak identification of ARMA models.
It should be stressed that the choice of i∗ need not be completely
arbitrary (i.e., it is not merely a matter of normalization). While
the decomposition method itself provides no guide as to how this
choice should be made and the estimated variation in trend and
cycle are robust to the choice, there may be compelling reasons in
any particular application to choose one regime over another. For
example, for UC models of the business cycle, the usual practice
is to assume that the mean of the cycle in the ‘‘normal’’ regime,
defined as themost frequently occurring, is zero (e.g. Kim and Nel-
son (1999)). This choice is driven by the argument that the large,
asymmetric shocks that yield non-zero mean cycles are abnormal
events. In certain cases, it might also be possible to use subsequent
analysiswith the differentmeasures of the cycle obtained fromdif-
ferent choices of i∗ in order to discriminate amongst them.11
Finally, and in contrast to the RDSS decomposition and the UC

approach, the BN decomposition identifies the mean of the cycle
by assuming that it is zero. Thus, the BN decomposition ties the
hands of the researcherwanting to extract the trend and cycle from
a regime-switching process. In particular, even if the researcher
has a priori reasons for allowing a non-zero mean cycle, the BN
decomposition does not permit it.

3. Conclusion

We have developed a new approach to trend/cycle decomposi-
tion of time series that follow regime-switching processes. Because
of its mechanics, we refer to this new approach as the ‘‘regime-
dependent steady-state’’ (RDSS) decomposition. The RDSS decom-
position is useful because it provides optimal estimates of trend
and cycle for a broader class of regime-switching processes than ei-
ther the Beveridge–Nelsondecomposition or theUnobservedCom-
ponents approach. In future research, we plan to apply the RDSS
decomposition to study the US business cycle using a range of lin-
ear and nonlinear forecasting models.
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