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For the past 20 years the question of whether various eco-
nomic time series have a unit root or are (trend) station-
ary has generated much research. Using standard tests, many
researchers are unable to reject the unit-root null hypothesis
for macroeconomic and � nancial time series such as gross
domestic product (GDP), interest rates, and exchange rates
(Nelson and Plosser 1982). Perron (1989) argued that the
evidence in favor of unit roots has been overstated, because
standard tests have low power against trend-stationary alter-
natives with structural breaks in trend level or growth rate.
Perron remedied this problem by modifying the augmented
Dickey–Fuller test with dummy variables to account for a sin-
gle structural break. Christiano (1992), Banerjee, Lumsdaine,
and Stock (1992), and Zivot and Andrews (1992) extended
this methodology to endogenous estimation of the break date,
while Lumsdaine and Papell (1997) considered a test robust
to two structural breaks. Hereafter we will refer to this class
of tests as Perron-type tests. Leybourne, Mills, and Newbold
(1998) and Hamori and Tokihisa (1997) demonstrated a con-
verse problem—that standard unit-root tests reject too often
when there is a single structural break in trend or variance
under the null hypothesis.

Although most of the literature has focused on the effects
of a � xed number of structural breaks on unit-root tests, there
is a growing consensus that the number of regime changes
in economic time series might be better modeled as aris-
ing from a probabilistic process. To this end, many authors
have successfully used Hamilton’s (1989) Markov-switching
model to capture regime change in a diverse set of macro-
economic and � nancial time series. It is thus natural to ask
what effects Markov-switching regime change might have on
unit-root tests, including the Perron-type tests developed to
mitigate the effects of a � xed number of structural breaks.

Examples in which this issue might be relevant are not
hard to � nd. Evans and Wachtel (1993) suggested an I(1)
Markov-switching trend model for prices after standard unit-
root tests on the price level failed to reject. Garcia and Perron

(1996) argued for an I(0) Markov-switching trend and vari-
ance model of in� ation, and real interest rates based on unit-
root tests performed by Perron (1990) suggested that these
series were I(0) if one break in the level of trend is allowed.
Finally, many studies that employ a Markov-switching vari-
ance or trend growth rate simply assume a unit root in the
series of interest without any pretesting, most likely because
unit-root tests from previous studies suggest that the series are
I(1). Examples include Hamilton’s (1989) original article for
gross national product (GNP), Cecchetti and Mark (1990) for
consumption and dividends, and Engel (1994) for the nominal
exchange rate.

In this study we investigate the effects of several types
of Markov regime switching on unit-root tests, focusing on
regime change in trend growth rate and variance, the form
of structural change most often considered in the macro-
economics and � nance literature. The literature surrounding
structural breaks and unit-root tests provides insight into the
size and power effects of a � xed number of breaks in trend
growth rate on standard unit-root tests. However, it is not
clear that these results generalize to the case of endoge-
nous, Markov-switching breaks in trend. Perhaps the clos-
est to addressing this question is the work of Balke and
Fomby (1991), who demonstrated that standard unit-root tests
continue to have low power when a series has endogenous,
probabilistic breaks in trend growth rate. However, the pro-
cess driving their breaks is an independent Bernoulli process,
not a Markov-switching process, and they did not consider
the performance of Perron-type tests. With regards to regime
change in variance, severa1 authors have considered the effects
of the generalized autoregressive conditional heteroscedas-
ticity (GARCH)-type heteroscedasticity on unit-root tests—
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for example, Pantula (1988), Kim and Schmidt (1993), Seo
(1999), and Hecq (1995), the latter considering the effects on
Perron-type tests. However, the effects of Markov switching
in variance have not been considered. The only studies we are
aware of investigating the effects of a Markov regime change
in a testing framework are those of Evans and Lewis (1993)
and Hall, Psaradakis, and Sola (1997), who concluded that
Markov switching in trend growth rate or in the cointegrating
vector will weaken the evidence in favor of cointegration in a
bivariate system.

This article is organized as follows: In Section 1 we
evaluate the performance of unit-root tests when the true
data-generating process undergoes regime switching in trend
growth rate but is otherwise I(0). In line with previous liter-
ature, we � nd that standard unit-root tests do a poor job of
distinguishing this model from an integrated process. How-
ever, we also � nd that Perron-type tests have low power in
this case. The Markov-switching trend model has often been
used to model business-cycle asymmetry. Thus, we also con-
sider alternative Markov-switching models of business-cycle
asymmetry, in particular a model by Kim and Nelson (1999)
that allows regime switching in the transitory component.
Unit-root tests have very good power against this generat-
ing process, indicating that the true nature of nonlinearities
in the business cycle is very important for what effects these
nonlinearities have on unit-root tests. Finally, we brie� y con-
sider a model with Markov-switching autoregressive param-
eters. Such a model, with one regime an I(1) process and
the other stationary, has been used by several authors—for
example, Ang and Bekaert (1998)—to model interest rates.
Standard tests have very low power against this process for
empirically plausible parameterizations. In Section 2 we eval-
uate the performance of unit-root tests when the true data-
generating process is I(1) in addition to the Markov switch-
ing. The size distortions pointed out in the literature for a
single break in trend growth rate or variance do not general-
ize to most parameterizations of Markov switching. However,
similar to the � ndings of Hecq (1995) for integrated GARCH
(IGARCH) errors, Markov switching in variance can cause
signi� cant overrejection in Perron-type tests that allow for a
single structural break in level. Section 3 concludes.

1. THE POWER OF UNIT–ROOT TESTS AGAINST
REGIME–SWITCHING ALTERNATIVES

1.1 Regime Switching in the Trend Component

In this section we investigate the power of unit-root tests,
including Perron-type tests, when the true process is I(0) con-
ditional on a Markov-switching trend growth rate. To begin,
consider the following data-generating process:

yt
D ’t

C ct

’t
D Œt

C ’tƒ1

Œt
D Œ1St

C Œ041 ƒ St5

”4L5ct
D ˜t1 ˜t iid401‘ 2

˜ 51 (1)

where St is a discrete, unobserved state variable that takes
on the value 0 or 1, ’t is a trend component with a switch-
ing growth rate, and ”4L5 is a lag polynomial with either

all roots outside the unit circle or one root on the unit circle
and the rest outside. In this article, we consider the case in
which St is � rst-order Markov switching. Here, the value of
St at time t depends only on its value at time t ƒ 1, such that
P4St

D 1 — Stƒ1
D 15 D p11 and P4St

D 0 — Stƒ1
D 05 D p00.

The model in (1) is a version of the models given by
Hamilton (1989) and Lam (1990). Hamilton (1989) restricted
one root of ”4L5 to unity; that is, ct had a stochastic trend.
We will consider Hamilton’s version of (1) in Section 2. Lam
(1990) generalized Hamilton’s model to allow ct to (possibly)
be a stationary autoregressive process. In this section we con-
sider the performance of unit-root tests in this case, where all
roots of ”4L5 lie outside the unit circle. Here, innovations do
not have permanent effects in the periods between shifts in
the growth rate of trend. For some intuition into how unit-
root tests will perform at distinguishing this model from the
I(1) null, consider the alternative representation of the Markov
trend function, ’t :

’t
D ’0

C Œ0
ü t C 4Œ1

ƒ Œ05
tX

jD1

Sj 0

Then, setting ’0
D 0,

yt
D Œ0

ü t C RTt
C ct

RTt
D RTtƒ1

C 4Œ1
ƒ Œ05

ü St 0 (2)

Here yt is written as the sum of a deterministic trend, Œ0
ü t,

a stochastic trend, RTt , and a stationary component, ct . The
stochastic trend is introduced because the effects of the dis-
crete shocks from the switching trend, 4Œ1

ƒ Œ05
ü St , are per-

manently re� ected in the level of RTt . This stochastic trend
is different from an integrated process in the traditional sense
that it does not necessarily change each period. It is similar to
the integrated case in that � rst-differencing yt eliminates the
stochastic trend, leaving only a Markov-switching mean.

To assess the power of unit-root tests against the process
given in (2), we perform Monte Carlo simulations for both
standard and Perron-type unit-root tests. We parameterize the
experiments based on the observation that the tests should do
a better job of identifying the alternative given by (2) when
the proportion of the variance of changes in yt given by the
stochastic trend, RTt , is smaller rather than larger. The vari-
ance of innovations to RTt is given by 4Œ1 ƒ Œ05

24p ƒ p25,
where p D E4St

D 15 D 41ƒ p005=42 ƒ p00 ƒ p115. Lam (1990)
found that 37% of the variance of growth rates in real
U.S. GNP is due to RTt . We thus chose parameter values
that will yield this 37% proportion when p11

D 005 and p00
D

0095, the transition probability estimates found by Lam. These
parameter values are Œ0 D 1, Œ1 D ƒ105, ‘ 2

… N4010045, and
”4L5 D 1. For each unit-root test, 1,000 Monte Carlo simu-
lations were performed with two sample sizes, T D 200 and
T D 500, and the initial values of St and yt set equal to 0. To
set p11 and p00, we appeal to an existing literature (Hamilton
1989; Lam 1990; Diebold and Rudebusch 1996; Engel 1994),
which has found for various monthly and quarterly series that
one state is highly persistent, generally having a transition
probability above 0.9, while the other is somewhat less per-
sistent, although still usually having a transition probability of
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0.5 or greater. We thus consider the following values of p00:
0.9, 0.95, 0.98 and of p11: 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98.

1.1.1 Augmented Dickey–Fuller Test. We � rst consider
the power of the augmented Dickey-Fuller, hereafter ADF, test
(Dickey and Fuller 1979; Said and Dickey 1984) against the
alternative hypothesis given in (2). We consider the ADF test
based on the t statistic associated with the null hypothesis
� D 1 from the test regression

yt
D c C �ytƒ1 C ‚t C

kX

jD1

”jãytƒj
C ‡t (3)

with the lag length, k, chosen by the backward lag-length
selection procedure given by Campbell and Perron (1991) with
a maximum lag length, Nk, set equal to the lower integer bound
of T 1=3 as suggested by Said and Dickey (1984).

As would be expected from the existing literature, the abil-
ity of the ADF tests to distinguish the regime-switching trend-
stationary alternative given in (2) is quite poor. Table 1 shows
the rejection probabilities for the 5% nominal-size ADF test.
For the T D 200 case, the test never rejects above 35%, only
rejects above 20% for 6 of the 21 combinations of the transi-
tion probabilities considered, and often rejects in the 5–10%
range. The test tends to perform better when one transition
probability dominates the other; for example, for the values
of the transition probabilities estimated by Lam (1990) for
U.S. real GDP, p00 D 095 and p11 D 005, the test rejects with a
31% frequency. This is because the variance of innovations to
the stochastic trend, RTt , is smaller the larger the difference
between the transition probabilities; that is, 4Œ1

ƒŒ05
24pƒp25

is a decreasing function of —p00 ƒ p11—. Intuitively, as one
state becomes increasingly dominant, the process more closely
resembles one with constant trend growth rate. For the larger
sample size, the ADF test has even lower power, rejecting
at 10% or less frequency in all cases. This is not surprising
because the larger sample size gives the ADF test more oppor-
tunity to detect the stochastic trend, RTt .

1.1.2 Perron-Type Tests. Since the in� uential work of
Perron (1989), a large number of unit-root tests that allow for
structural breaks in trend growth rate or level under the alter-
native have been developed. The objective of this research
program is to develop tests with higher power against broken-
trend-stationary alternatives. These tests are robust to a � xed

Table 1. Empirical Power of a 5% Augmented Dickey-Fuller Test: True Process Has Markov
Switching in Trend Growth Rate

T

200 500

Power Power

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0013 0031 0033 005 0005 0006 0008
006 0024 0031 0016 006 0005 0005 0009
007 0015 0008 0025 007 0008 0010 0007
008 0006 0005 0012 008 0005 0006 0004
009 0006 0004 0020 009 0005 0004 0006
0095 0006 0005 0010 0095 0005 0006 0006
0098 0014 0011 0008 0098 0009 0009 0003

number of structural breaks, usually one. However, there has
been some argument in the literature that when there are mul-
tiple structural breaks in trend growth rate it may be suf� -
cient to simply account for the largest of these breaks; see, for
example, Garcia and Perron (1996, p. 113). We are thus inter-
ested in whether such tests provide increased power against an
alternative with a Markov-switching trend growth rate. Here
we consider two such tests that assume a single break in the
growth rate of the trend function occurring at an unknown
date, one given by Perron (1994, 1997), hereafter the Perron
test, and the other given by Zivot and Andrews (1992), here-
after the ZA test. The Perron test assumes a single break in
trend growth rate under both the null and alternative hypothe-
ses and speci� es the break as an additive outlier, meaning that
the full effects of the break are immediately re� ected. The
test is based on the regressions in equations (3a) and (3b) of
Perron (1997). The ZA test assumes a single break in trend
growth rate under only the alternative hypothesis and speci-
� es the break as an innovational outlier, meaning that the full
effects of the change are felt over time. The test is based on
the regression in equation 20 of Zivot and Andrews (1992).
For both tests the date of the structural break was estimated
as the date that provides the most evidence against the null
hypothesis; see Zivot and Andrews (1992) for details.

Tables 2–3 contain the rejection frequencies for 5%-
nominal-size Perron and ZA tests. Interestingly, the Perron
test performs worse than the ADF test for many of the cases
considered. For example, when T D 200, the ADF test rejects
more frequently for 17 of the 21 combinations of transition
probabilities. For the transition probabilities estimated by Lam
(1990) for real GDP, p00 D 095 and p11 D 005, the Perron test
rejects 16% of the time versus 31% for the ADF test. The ZA
test performs somewhat better, rejecting more frequently than
the ADF test for 18 of the 21 combinations of transition prob-
abilities considered when T D 200. However, the difference is
not decisive: In 10 of these 18 cases, the ZA test is within
15% of the ADF test. In addition, the ZA test only rejects
more than 40% of the time on four occasions and for over
half the cases rejects at a less than 25% frequency. For the
Lam (1990) transition probability estimates for real GDP, the
ZA test rejects at a 19% frequency versus 31% for the ADF
test. When T D 500 the tests have even lower power, usually
rejecting at close to their nominal size.
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Table 2. Empirical Power of a 5% Perron (1994,1997) Test: True Process Has Markov Switching in
Trend Growth Rate

T

200 500

Power Power

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0014 0016 0022 005 0005 0006 0007
006 0013 0015 0024 006 0003 0005 0006
007 0010 0011 0019 007 0004 0010 0008
008 0005 0005 0012 008 0003 0005 0005
009 0004 0003 0009 009 0005 0006 0003
0095 0005 0003 0009 0095 0004 0004 0005
0098 0011 0009 0017 0098 0006 0006 0002

1.2 Regime Switching in the Transitory Component

Models with two-state Markov switching in trend growth
rate, such as that discussed in the previous section, have been
used extensively to model business-cycle asymmetry. One rea-
son for its popularity is the ability of a regime-switching trend
growth rate to capture the empirical observation that reces-
sions are steeper and shorter than expansions. However, one
implication of the two-state Markov-switching trend model is
that recessions have permanent effects on the level of output;
that is, the economy never recovers output lost during a reces-
sion. Many authors have provided evidence that this implica-
tion is not consistent with the data; instead, following steep,
short recessions the economy seems to undergo a high-growth
recovery phase to gain back what was lost; see, for example,
Friedman (1969, 1993), Wynne and Balke (1992, 1996), and
Sichel (1994). In other words, the business cycle is better char-
acterized with three phases rather than two. Recently, Kim and
Nelson (1999) used Markov regime switching in the transitory
component of real GDP to capture this pattern of business-
cycle asymmetry. Here we consider a trend-stationary version
of their model:

yt
D ’t

C ct

’t
D Œ C ’tƒ1

”4L5ct
D ƒ ü St

C ˜t1 ˜t iid401‘ 2
˜ 51 (4)

Table 3. Empirical Power of a 5% Zivot–Andrews (1992) Test: True Process Has Markov Switching in
Trend Growth Rate

T

200 500

Power Power

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0024 0019 0073 005 0007 0010 0013
006 0014 0043 0043 006 0005 0007 0010
007 0040 0025 0035 007 0001 0006 0010
008 0010 0036 0035 008 0010 0010 0014
009 0016 0009 0020 009 0005 0007 0010
0095 0012 0009 0018 0095 0004 0007 0010
0098 0024 0028 0033 0098 0012 0014 0010

where ”4L5 has all roots outside the unit circle. Here, unlike
the model in (1), the average growth rate of the determinis-
tic trend, Œ, is constant. Instead, regime switching occurs in
the transitory component, ct . If ƒ < 0, when St

D 1 the level
of the series is driven down into a steep recession. However,
the recession is not permanent because past shocks from ƒ
disappear through the autoregressive dynamics in the transi-
tory component, causing a high growth recovery phase once
St returns to 0. In the words of Friedman (1969, 1993), the
economy is “plucked” downward during recession, bouncing
back to trend following the recession.

The results of Kim and Nelson (1999) suggest that a model
specifying recessions as “plucking” episodes provides as good
as or better description of U.S. real GDP than a model with
regime shifts in the trend component. However, given that the
regime switching in (4) works through the transitory com-
ponent, we would expect unit-root tests to have much better
power against this alternative than the model in Section 1.1.
To investigate this, we perform a Monte Carlo experiment with
the ADF test. We parameterize the simulation based on the
percentage of the variance of ct coming from the “plucks” ƒ.
Kim and Nelson (1999) found this percentage to be approxi-
mately 80% for real GDP for estimated transition probabilities
of p11

D 095 and p00
D 070. When ”4L5 D 1, this percentage

is given by

ƒ24p ƒ p25

ƒ24p ƒ p25 C‘ 2
˜

0 (5)
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To meet the 80% metric when p11 D 095 and p00 D 070, we
parameterize the simulation with ƒ D ƒ100 and ˜t N401 0045.
We set Œ D 008, the average growth rate of real GDP over
the Kim and Nelson sample. Again, we perform 1,000 Monte
Carlo trials for the same range of transition probabilities as in
Section 1.1.

Table 4 contains the rejection frequencies for the 5% ADF
test. As expected, the ADF test performs very well, rejecting at
close to 100% for the most empirically relevant values of the
transition probabilities. For example, for the estimated tran-
sition probabilities found by Kim and Nelson for real GDP,
p11 D 095 and p00 D 070, the ADF test rejects at a 99% fre-
quency when T D 200 and a 100% frequency when T D 500.
The power remains above 50% in all but one of the 21 combi-
nations considered for T D 200 and in all cases for T D 500.

The differing performance of unit-root tests for the model
in (1) versus the model in (4) is important in answering the
question of whether real GDP has a unit root. If we believe
that business-cycle nonlinearities are shifts in trend as shown
by Lam (1990), these shifts will have signi� cant deleterious
effects on the power of unit-root tests, including Perron-type
tests. If, however, these nonlinearities are better character-
ized as Friedman’s “plucks,” the power of unit-root tests will
be unaffected. Instead, the only remaining sort of structural
change relevant to unit-root tests will be long-run breaks, such
as the much-discussed productivity slowdown. In this case
Perron-type tests will still have an advantage over standard
tests such as the ADF test. This points us to the importance
of determining the true nature of business-cycle nonlinearities
for deciding what classes of unit-root should be used in stud-
ies of real GDP.

1.3 Regime-Switching Autoregressive Coef’ cients

To this point we have investigated Markov switching taking
the form of discrete disturbances to the trend or transitory
component of a time series. Another popular formulation is
Markov switching in the autoregressive parameters of a time
series, an example of which is

yt
D Œt

C �tytƒ1
C ˜t

Œt
D Œ1St

C Œ041 ƒ St5

Table 4. Empirical Power of a 5% Augmented Dickey–Fuller Test: True Process Has Markov
Switching in the Transitory Component

T

200 500

Power Power

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 1000 1000 1000 005 1000 1000 1000
006 1000 1000 0099 006 1000 1000 1000
007 1000 0099 0099 007 1000 1000 1000
008 0099 0098 0097 008 1000 1000 1000
009 0095 0087 0079 009 1000 1000 0099
0095 0088 0070 0053 0095 1000 0099 0094
0098 0081 0052 0030 0098 1000 0094 0062

�t
D �1St

C �041 ƒ St5

˜t iid401‘ 2
˜t5

‘ 2
˜t

D‘ 2
˜1St

C‘ 2
˜041ƒ St50 (6)

In (6), yt follows a � rst-order autoregressive [AR(1)] process
in which the autoregressive parameter, the constant term, and
the variance of the error term all switch between two regimes.
A popular version of (6) in the empirical literature speci� es
yt to be I(1) in one regime and I(0) in the other; for example,
�0

D 1 and —�1
— < 1. Ang and Bekaert (1998) demonstrated

that, as long as the I(0) regime has positive probabilities of
occurring and persisting, in this case 41ƒp005 6D 0 and p11 6D 0,
yt is covariance stationary. This occasionally integrated model
has been usefully employed to model interest rates. For exam-
ple, Ang and Bekaert (1998) pointed out that the U.S. Fed-
eral Reserve tends to move short-term interest rates in a very
persistent fashion during low-in� ation periods. However, dur-
ing high-in� ation times, Federal Reserve interest-rate changes
become less persistent and have higher variance.

For our purposes, we are interested in the ability of unit-root
tests to distinguish the occasionally integrated model from
the I(1) null hypothesis. To investigate this issue, we perform
Monte Carlo simulations with the ADF test when the gener-
ating process is (6). We parameterize the Monte Carlo exper-
iments to mimic the pattern of Federal Reserve interest-rate
movements discussed previously. Thus, when St

D 0 (low-
in� ation times), yt is a random walk with no drift; that is,
�0

D 11Œ0
D 0, and ˜t

—St
D 0 N401 0255. When St

D 1 (high-
in� ation times), yt is a stationary AR(1) with positive mean
and ˜t

—St
D 1 N401 2005. One would expect that unit-root

tests would perform worse for more persistent values of the
autoregressive parameter when St

D 1. Thus, we consider three
pairs of Œ11�1—4100100853 40051 00953 40025100955. In these
pairs, Œ1 is altered to maintain a constant mean of 5 for yt in
the stationary state.

Tables 5–7 present the Monte Carlo simulations for the
three pairings of Œ11�1, and the sample sizes T D 200 and
T D 500. As would be expected, the tests perform better as
�1 decreases, as p11 increases relative to p00 [the less time
that is spent in the I(1) state], and the larger the sample size
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Table 5. Empirical Power of a 5% Augmented Dickey–Fuller Test: True Process Has Markov
Switching in the Autoregressive Parameters and Œ1 D 1 0, �1 D 0 8

T

200 500

Power Power

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0012 0009 0008 005 0043 0014 0008
006 0017 0009 0009 006 0050 0019 0009
007 0020 0012 0009 007 0063 0026 0010
008 0028 0017 0012 008 0074 0035 0013
009 0048 0030 0019 009 0093 0064 0023
0095 0064 0047 0027 0095 0099 0083 0041
0098 0081 0066 0047 0098 1000 0096 0073

[the more data available for the test to detect the I(0) state].
In general, however, the tests perform very poorly for empir-
ically plausible parameterizations. Of the 63 power statistics
reported for the T D 200 cases, the test has power greater than
50% on only 3 occasions (all for the smallest value of �1) and
greater than 20% on only 17 occasions (10 of these for the
smallest value of �1). As the sample size increases, the per-
formance of the test is fairly good for the lowest value of �1

considered but is still poor for larger values of �1. For exam-
ple, Ang and Bekaert (1998) showed that the regime switches
in U.S. interest rates roughly correspond to business-cycle fre-
quencies. Depending on the frequency of the data, this corre-
sponds to values of p00 between 0.9 and 0.95 and values of
p11 between 0.5 and 0.9. For �1 D 09 and T D 500, the ADF
test has power greater than 40% over this range of transition
probabilities on only one occasion.

2. REGIME–SWITCHING I(1) PROCESSES AND THE
SIZE OF UNIT–ROOT TESTS

2.1 Regime Switching in the Trend
Component and Variance

In Section 1.1 we were interested in the ability of unit-root
tests to distinguish a process that was I(0) with a Markov-

Table 6. Empirical Power of a 5% Augmented Dickey–Fuller Test: True Process Has Markov
Switching in the Autoregressive Parameters and Œ1 D 0 5, �1 D 0 9

T

200 500

Power Power

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0008 0007 0007 005 0015 0009 0005
006 0010 0010 0007 006 0019 0009 0007
007 0011 0010 0010 007 0027 0013 0009
008 0015 0012 0009 008 0039 0017 0010
009 0022 0017 0013 009 0064 0035 0016
0095 0032 0027 0021 0095 0086 0061 0032
0098 0042 0037 0029 0098 0095 0085 0059

switching trend growth rate from an I(1) process. Here we will
investigate what deleterious size effects a Markov-switching
trend growth rate and variance in an otherwise I(1) process
might have on unit-root tests. Consider the following model
motivated by Hamilton (1989):

yt
D ’t

C ct

’t
D Œt

C ’tƒ1

Œt
D Œ041ƒ St5 C Œ1St

”4L5ct
D ˜t1 ˜t iid401‘ 2

˜t5

‘ 2
˜t

D‘ 2
˜1St

C‘ 2
˜041ƒ St50 (7)

Again, St is � rst-order Markov switching and ’t is a deter-
ministic trend component with a switching growth rate. As
Hamilton (1989) did, we specify ”4L5 to have one root on
the unit circle and all other roots outside the unit circle
so that shocks to yt in between the Markov-switching trend
breaks have permanent effects on the level of the series. We
also allow the variance of the error term to undergo regime
switching.

To simplify matters, we set ”4L5 D 41 ƒ L5. The model in
(7) can then be written with a constant growth rate and serially
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Table 7. Empirical Power of a 5% Augmented Dickey–Fuller Test: True Process Has Markov
Switching in the Autoregressive Parameters and Œ1 D 0 25, �1 D 0 95

T

200 500

Power Power

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0007 0006 0008 005 0010 0008 0006
006 0009 0008 0009 006 0009 0007 0005
007 0009 0008 0009 007 0012 0008 0006
008 0009 0011 0011 008 0015 0011 0009
009 0011 0013 0010 009 0029 0015 0013
0095 0017 0014 0015 0095 0044 0027 0019
0098 0017 0017 0017 0098 0059 0045 0034

correlated, conditionally heteroscedastic errors:

ãyt
D Œ C et

et
D 4Œ1

ƒ Œ5St
C 4Œ0

ƒ Œ541 ƒ St5 C ˜t 0 (8)

To make E4et5 D 0, choose Œ D 4Œ1 ƒŒ05p CŒ0. Substituting
in the chosen expression for Œ, we arrive at the autocovariance
function

cov4et1 etƒk5 D 4Œ1
ƒ Œ05

2E4St
ƒ p54Stƒk

ƒ p5

D 4Œ1
ƒ Œ05

2cov4St1 Stƒk50 (9)

Moreover, conditional on St1 et has a time-varying variance
due to the heteroscedasticity of ˜t :

var4et
— St

D j5 D ‘ 2
˜j1 j D 0110 (10)

A result from the theory of Markov processes tells us that
P4St

D 1 — Stƒk
D 15 and P4St

D 0 — Stƒk
D 05 converge to the

unconditional probabilities p and 41ƒ p5 at a geometric rate.
Then, noting that cov4St1 Stƒk5 D 4p ü P4St

D 1 — Stƒk
D 15ƒp25,

we have cov4et1 etƒk5 D 4Œ1 ƒ Œ05
24p ü P4St

D 1 — Stƒk
D 15 ƒ

p25 ! 0 geometrically. Thus, the model in (7) can be written
with constant trend growth rate and errors exhibiting serial
correlation that dies off geometrically. It should be noted that
this result is entirely due to the modeling of breaks in the trend
function as endogenous, probabilistic events. It does not hold
true in models assuming a � xed number of structural breaks
in trend growth rate such as the cases considered by Perron
(1989) and Zivot and Andrews (1992) among others.

Several previous studies (e.g., Schwert 1989) have investi-
gated the properties of unit-root tests under various forms of
autoregressive moving average (ARMA) innovations. There-
fore, we will � nd an ARMA process a useful alternative
representation of et . Consider the following stationary AR(1)
representation of St , given by Hamilton (1989):

St
D 41 ƒ p005 C ˆStƒ1

C —t

ˆ D ƒ1 C p00
C p111 (11)

where, conditional on Stƒ1 D 1, —t
D 41 ƒ p115 with proba-

bility p11 and —t
D ƒp11 with probability 1 ƒ p11 and condi-

tional on Stƒ1
D 0, —t

D ƒ41 ƒ p005 with probability p00 and

—t
D p00 with probability 1 ƒ p00. Hamilton (1989) showed

that the error term, —t , has E4—t5 D 0, E4—2
t 5 D ‘ 2

—
D

p1141 ƒ p115p C p0041 ƒ p00541 ƒ p5 and is uncorrelated in
that E4—t

— —tƒj5 D 0 for all four possible values of —tƒj and
j D 11 21 : : : Using (11), note that

et
ƒ ˆetƒ1 D d C b—t

C ˜t
ƒ ˆ˜tƒ13

d D 4Œ1 ƒ Œ541ƒ p005 C 4Œ0 ƒ Œ541 ƒ p1151

b D 4Œ1 ƒ Œ050 (12)

The term on the left side of (12) is an AR(1), while the term on
the right side has the autocovariance function of an MA(1) in
that it is 0 after the � rst lag. Thus, et follows an ARMA41115

process.
To determine the effects of the regime switching in trend

growth rate and variance on unit-root tests, we perform Monte
Carlo experiments for the three tests discussed in Section 1—
the ADF test, the Perron test, and the ZA test. We consider
two cases, one in which there is only regime switching in
trend growth rate and one in which there is only switching in
variance. To parameterize the trend switching case, we set the
parameters to yield a speci� ed amount of serial correlation as
measured by the � rst-order autocorrelation of et :

corr4et1etƒ15D 4Œ1 ƒŒ05
24p ü p11 ƒp25

4Œ1 ƒŒ05
24pƒp25Cp‘ 2

�1
C41ƒp5‘ 2

�0

1 (13)

where the denominator is the unconditional variance of et . We
set Œ0

D 1, Œ1
D 5, ˜t N401‘ 2

˜t5, and ‘ ˜0
D‘˜1

D 1 to yield
a value of (13) equal to 050 for p11

D 009 and p00
D 007, the

transition probability estimates for U.S. real GNP found by
Hamilton (1989). This level of autocorrelation is similar to that
found in the existing literature. For example, the value of (13)
for U.S. real GNP reported by Hamilton is 0.38 while Engel’s
(1994) parameter estimates for the Japanese/French exchange
rate suggest a value of (13) equal to 0.50.

For the variance switching case, we set ˜t N401‘ 2
˜t5,

‘ ˜1=‘˜0 D 3=1, and Œ0 D Œ1 D 100. This level of heteroscedas-
ticity is quite reasonable for asset prices; for example, Turner,
et al. (1989) reported ‘ ˜1=‘ ˜0 D 206 for stock returns, while
Engel (1994) reported much higher ratios for several U.S.
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exchange rates. However, this level of heteroscedasticity is
overstated for series such as real GDP. Thus, our results for the
switching variance case have more relevance for � nancial time
series than for macroeconomic quantities. Again, we consider
the same range of transition probabilities and sample sizes as
in Section 1. Each Monte Carlo experiment is composed of
1,000 trials with initial values of St and yt set equal to 0.

We begin by considering the effects of the Markov-
switching trend growth rate in (7). Because this regime switch-
ing simply introduces serial correlation into an otherwise I(1)
process, we can appeal to the large literature evaluating the
effects of serial correlation on unit-root tests. Schwert (1989)
demonstrated that the ADF test performs well in the presence
of ARMA errors such as those in (12). However, Leybourne
et al. (1998) showed that the ADF test tends to overreject the
null hypothesis when there is a single break in trend growth
rate that occurs early in the sample. Thus, we expect the ADF
test to overreject for parameterizations of (7) that yield few
breaks, with one occurring early in the sample. The question
of interest is for how broad a range of the Markov-switching
parameterizations this result holds. Table 8 presents the rejec-
tion frequencies for the 5% ADF test. Note that only for
T D 200 and p11

D 0098 are the size distortions pointed out by
Leybourne et al. present. For most parameterizations, the ADF
test has size close to its nominal size and in general is slightly
oversized. This is likely due to the Campbell–Perron lag-
selection procedure, which was documented by Hall (1994),
to cause slight overrejection.

Next we consider the Perron and ZA tests that allow for a
single break in trend growth rate under the alternative. Table 9
contains the rejection frequencies for the 5% Perron test.
The Perron test performs similarly to the ADF test for most
parametrizations, which is not surprising given that it captures
serial correlation in the same way as the ADF test. Notably,
the Perron test performs better than the ADF test when p11 D
0098. This is most likely because the Perron test is robust to
a single break in trend growth rate under the null hypothesis
as well as the alternative, making the Leybourne et al. (1998)
critique not as relevant. Table 10 demonstrates that the ZA
test can be signi� cantly oversized when there are only a small
number of breaks—that is, for large values of p00 or p11. This
is because the distribution of the ZA test is derived assuming
a null with no structural change, meaning the presence of a

Table 8. Empirical Size of a 5% Augmented Dickey–Fuller Test: True Process Has Markov Switching
in Trend Growth Rate

T

200 500

Size Size

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0005 0007 0005 005 0007 0006 0005
006 0007 0007 0007 006 0005 0005 0005
007 0005 0007 0006 007 0005 0005 0005
008 0006 0006 0007 008 0004 0006 0005
009 0006 0003 0006 009 0005 0004 0005
0095 0006 0005 0006 0095 0005 0005 0004
0098 0015 0010 0006 0098 0007 0007 0003

small number of structural breaks will violate this null hypoth-
esis and lead to overrejections. This issue is not as serious for
the large sample size; T D 500. Both the Perron and the ZA
tests perform similarly to the ADF test for this larger sample
size.

We now move to the simulations investigating Markov
switching in variance. Many authors have investigated the
effects of various forms of heteroscedasticity on unit-root tests,
including Pantula (1988), Kim and Schmidt (1993), and Seo
(1999). Provided that the heteroscedasticity meets certain con-
ditions, given explicitly by Hamori and Tokihisa (1997), het-
eroscedasticity does not create size distortions for standard
unit-root tests. Piger (2000) showed that Markov-switching
heteroscedasticity meets these conditions, suggesting that stan-
dard unit-root tests should perform well. However, we are
still interested in investigating two scenarios. First, Hamori
and Tokihisa (1997) showed that a single break in variance
causes Dickey–Fuler-type tests to be oversized. Thus, we
might expect that certain parameterizations of Markov switch-
ing in variance that yield a small number of breaks will cause
size distortions in the ADF test. Table 11 demonstrates that
this is not the case. The ADF test is reasonably sized for
even large values of p00 and p11, suggesting that the result of
Hamori and Tokihisa fades quickly when more than one break
is allowed.

Second, Hecq (1995) pointed out, for the case of IGARCH
errors, that periods of high and low variance in an integrated
process can lead to the illusion of breaks in the level of trend.
Tests that are robust to a structural break in level under the
alternative can spuriously detect such breaks and overreject as
a result. We thus might expect versions of the Perron and the
ZA tests that allow for a break in the level of trend to be over-
sized in the presence of Markov-switching heteroscedasticity.
To investigate this issue, we consider the performance of the
Perron test allowing for a single break in the level of trend
under both the null and the alternative, based on equations
(14) and (17) of Perron (1994), and the ZA test allowing for a
single break in the level of trend under the alternative, given
by equation 10 of Zivot and Andrews (1992). As Tables 12–13
make clear, the size distortions can be signi� cant for certain
parameterizations of p00 and p11. For example, for T D 200
the 5% nominal-size Perron test rejects at a greater than 10%
frequency in all but one of the 21 combinations of transition
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Table 9. Empirical Size of a 5% Perron (1994,1997) Test: True Process Has Markov Switching in
Trend Growth Rate

T

200 500

Size Size

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0007 0005 0006 005 0005 0003 0008
006 0006 0004 0006 006 0004 0004 0004
007 0005 0005 0006 007 0005 0006 0004
008 0005 0006 0005 008 0004 0006 0003
009 0005 0004 0006 009 0005 0005 0003
0095 0005 0003 0005 0095 0003 0005 0002
0098 0009 0005 0004 0098 0005 0005 0002

probabilities considered and greater than 15% for 8 of the 21
combinations. The ZA test rejects at a greater than 10% fre-
quency in all but one case and greater than 15% in more than
half of the cases when T D 200. Both tests perform somewhat
better when T D 500 but are still oversized.

2.2 Regime Switching in the Transitory Component

In Section 1.2 we discussed how different Markov-
switching models of business-cycle asymmetry can have very
different implications for the effects of asymmetry on the
power of unit-root tests. Here we examine the difference this
modeling choice has for the size of unit-root tests. Con-
sider the following I(1) version of the model presented in
Section 1.2:

yt
D ’t

C zt
C ct

’t
D Œ C ’tƒ1

zt
D ztƒ1 C �t1 �t iid401‘ 2

� 5

”4L5ct
D ƒ ü St

C ˜t1 ˜t iid401‘ 2
˜ 51 (14)

where ”4L5 has all roots outside the unit circle. Here yt is
the sum of a deterministic trend with constant drift, a random-
walk component, and a stationary autoregressive component
that, assuming ƒ < 0, is “plucked” downward whenever St

D 1.

Table 10. Empirical Size of a 5% Zivot–Andrews (1992) Test: True Process Has Markov Switching in
Trend Growth Rate

T

200 500

Size Size

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0009 0010 0009 005 0007 0004 0005
006 0008 0009 0010 006 0007 0006 0007
007 0009 0010 0013 007 0006 0009 0007
008 0009 0009 0013 008 0005 0008 0009
009 0008 0009 0015 009 0011 0008 0009
0095 0011 0010 0019 0095 0005 0007 0008
0098 0024 0023 0029 0098 0010 0010 0008

To see the effects the process in (14) might have on the size
of unit-root tests, rewrite (14) in � rst differences assuming
”4L5 D 1:

ãyt
D Œ C e ü

t

e ü
t

D �t
C ã˜t

C ƒ ü ãSt 0 (15)

The process can thus be written in � rst differences with
constant drift and an error term that is augmented by a
Markov-switching component. The Markov switching intro-
duces additional serial correlation into the process—namely,
the � rst difference of St . One interesting note is the similar-
ity of this case to the additive-outlier literature discussed by
Franses and Haldrup (1994), among others. The parameter ƒ
would correspond to an additive outlier in the case in which
St was serially uncorrelated as opposed to being a Markov-
switching process. As Maddala and Yin (1997) and Vogelsang
(1999) pointed out, the � rst difference of St in (15) would
then introduce a � rst-order moving average [MA(1)] compo-
nent into the � rst difference of yt . For smaller values of ƒ, the
additional serial correlation introduced in both the Markov-
switching and additive-outlier cases is captured by tests such
as the ADF test and does not cause overrejections. However,
as the size of ƒ increases, the contribution of the transitory
component to the variance of ãyt increases relative to the con-
tribution of the stochastic trend component. This can even-
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Table 11. Empirical Size of a 5% Augmented Dickey–Fuller Test: True Process Has Markov Switching
in Variance

T

200 500

Size Size

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0007 0007 0005 005 0006 0005 0005
006 0008 0008 0006 006 0007 0006 0004
007 0006 0007 0007 007 0005 0005 0006
008 0007 0007 0008 008 0006 0006 0007
009 0007 0009 0008 009 0005 0006 0005
0095 0006 0008 0008 0095 0006 0004 0007
0098 0005 0006 0008 0098 0005 0006 0006

tually lead to spurious rejections from unit-root tests if the
variance of the transitory component begins to dominate. The
question is whether parameterizations of (14) corresponding
to U.S. business cycles generate such spurious rejections.

To investigate this issue, we perform Monte Carlo experi-
ments to investigate the performance of the ADF test when
the generating process is (14). We parameterize the simula-
tion using parameter estimates from Kim and Nelson (1999)
for U.S. real GDP. That is we set Œ D 081�t N40100451 ƒ D
ƒ1011 ˜t N401 00045, and the lag order of ”4L5 equal to 2
with ”1 D 1026 and ”2 D ƒ0046 Table 14 demonstrates that
this level of “plucking” is indeed large enough to cause spu-
rious rejections in the ADF test. These rejections are fairly
severe; the 5% ADF test rejects at a more than 10% frequency
for all but one of the combinations of the transition probabili-
ties considered in Table 14. For T D 200, the rejections climb
above 30% for 9 of the 21 cases, while for T D 500, rejections
are larger than 30% on 8 occasions. Again, this points out that
whether nonlinearities in the U.S. business cycle take the form
of shifts in trend or “plucks” in the transitory component can
have large implications for the performance of unit-root tests
applied to U.S. output series.

3. CONCLUSION

We have investigated the performance of unit-root tests
when the true process undergoes various types of Markov-
switching regime change. We consider both processes that are

Table 12. Empirical Size of a 5% Perron (1994, 1997) Test: True Process Has Markov Switching
in Variance

T

200 500

Size Size

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0012 0013 0012 005 0011 0006 0011
006 0014 0013 0014 006 0010 0009 0008
007 0012 0017 0013 007 0011 0015 0011
008 0013 0017 0019 008 0011 0016 0014
009 0012 0017 0021 009 0015 0010 0016
0095 0010 0016 0020 0095 0006 0014 0018
0098 0009 0012 0016 0098 0006 0006 0017

I(0) and I(1) in the periods between the regime switching. Our
main � ndings are as follows:

1. In line with previous literature, the ADF test does a poor
job of distinguishing an I(0) process with Markov-switching
breaks in trend growth rate from an I(1) process. Interestingly,
however, tests designed to be robust to a single structural break
in trend growth rate under the alternative also have very low
power in this case.

2. When the true process is I(1) and undergoes Markov
switching in both trend growth rate and variance, ADF tests
have approximately the correct size for almost all combina-
tions of transition probabilities. This demonstrates that stud-
ies documenting size distortions from a single break in trend
growth and variance do not generalize to multiple, probabilis-
tic breaks. However, tests robust to a single break in level
overreject the null hypothesis when there is Markov switching
in variance.

3. When modeling business-cycle asymmetry, an alterna-
tive to Markov switching in trend growth rate, as shown by
Lam (1990), is to allow for Markow-switching “plucks” in the
transitory component of GDP, as shown by Kim and Nelson
(1999). The ADF test has good power when these “plucks”
occur under the alternative hypothesis. However, the ADF test
can be oversized when the regime switching occurs under the
null, mainly because the “plucks” increase the contribution of
the transitory component to the series. This demonstrates that
the true nature of business-cycle asymmetry has serious impli-
cations for the performance of unit-root tests on output series.
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Table 13. Empirical Size of a 5% Zivot–Andrews (1992) Test: True Process Has Markov Switching
in Variance

T

200 500

Size Size

p11 p00 D 009 p00 D 0095 p00 D 0098 p11 p00 D 009 p00 D 0095 p00 D 0098

005 0015 0014 0014 005 0007 0011 0009
006 0015 0017 0015 006 0011 0010 0011
007 0016 0019 0016 007 0008 0016 0014
008 0015 0022 0021 008 0010 0020 0015
009 0014 0021 0024 009 0013 0016 0020
0095 0010 0017 0024 0095 0010 0013 0016
0098 0008 0012 0019 0098 0004 0011 0016
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