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This paper examines the determinants of employment growth in metro areas. To obtain growth rates,
we use a Markov-switching model that separates a city’s growth path into two distinct phases (high and
low), each with its own growth rate. The simple average growth rate over some period is, therefore, the
weighted average of the high-phase and low-phase growth rates, with the weight being the frequency
of the two phases. We estimate the effects of a variety of factors separately for the high-phase and
low-phase growth rates. Growth in the high phase is related to both human capital and industry mix,
while growth in the low phase is related to industry mix only, specifically, the relative importance
of manufacturing. Overall, our results strongly reject the notion that city-level characteristics influence
employment growth equally across the phases of the business cycle.
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1. Introduction

Over the last two decades, a large empirical literature has
focused on determining the characteristics associated with the
growth of cities and other local markets (e.g., counties, metropoli-
tan areas). Much of this work undoubtedly follows from the resur-
gence of growth theory and the corresponding empirical literature
on cross-country growth. Because cities within the same country
represent a rich cross section of economies with relatively similar
cultural and institutional characteristics, they constitute an attrac-
tive sample that can be used to test growth theories. Moreover,
given that the majority of the economic activity of the United
States is located within urban areas, the growth of cities is also
potentially important from the perspective of understanding ag-
gregate US economic performance.

Whereas most studies of urban growth distinguish themselves
by suggesting new explanatory variables, our contribution is a new
approach for summarizing the economic performance of cities,
which has usually focused on some measure of average growth
over a given period. Our alternative is the Markov-switching ap-
proach of Hamilton (1989), in which an economy’s growth path is
characterized as having two distinct phases (high and low), each
with its own growth rate. Instead of there being one underlying
structure to the economy—as summarized by the average growth
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rate—the Markov-switching approach allows for two underlying
structures that the economy switches between. This approach is
used frequently in analyses of national-level recession and expan-
sion phases, and has been applied to state-level data by Owyang
et al. (2005).

To date, the Markov-switching approach has not been applied
to city-level data, nor has it been used for serious analyses of
growth. The approach is potentially useful, however, because the
mechanisms that drive growth during a high phase may be very
different from those driving it during a low phase.1 By applying
the Markov-switching approach to cities we hope to demonstrate
first that city growth paths can be divided into high- and low-
growth phases, and then that growth rates in the two phases are
not related to the same variables. Low-growth phases occur be-
cause of shocks that throw a city’s economy out of its steady state,
which is when the economy is in its high-growth phase. Following
these shocks—which can be national shocks to oil prices, produc-
tivity, monetary policy, etc., or more-localized shocks—an econo-
my’s performance is, in large part, a recovery toward the steady
state. Because models of growth, whether at the national or city
level, are models of the steady state, there is very little theory
about the determinants of growth during low phases. There is no
reason, therefore, to expect that the factors that we think are im-
portant for growth during the high phase will be the same as for
growth during the low phase.

Indeed, recent research has documented the existence of
various asymmetries between the growth and decline of local

1 This was suggested in Owyang et al. (2005), although they looked at states,
which are not the appropriate level of disaggregation for analyzing labor-market
performance.
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labor markets. Glaeser and Gyourko (2005), for example, demon-
strate that the distribution of population growth rates across US
metropolitan areas tends to be “right-skewed”: the highest growth
rates are very large, whereas the lowest are relatively modest in
magnitude. This result suggests that the estimated relationships
between city-level characteristics and urban growth may depend
on whether a city is expanding or contracting. In addition, work
by Genesove and Mayer (2001) and Engelhardt (2003) shows that
individuals tend to behave very differently during housing market
booms and busts, further suggesting the existence of important
differences across local market growth phases.

For the most part, studies of growth in cities have taken
two approaches. This paper follows the first strand of the urban
growth literature, although our analysis is informed by the sec-
ond strand. In the first, the primary object of interest is some
measure of growth that characterizes the entire local market (e.g.,
population, employment, aggregate income, per capita income).
Typically, these studies estimate a series of regressions in an ef-
fort to identify which local market-level characteristics correlate
significantly with one or more of these measures. Besides geo-
graphic differences (i.e., the rapid growth of the South and the
West), much of this work has stressed the importance of hu-
man capital as a critical driver of growth over periods of sev-
eral decades (Glaeser et al., 1995; Simon and Nardinelli, 2002;
Glaeser, 2005a).

The second approach looks at growth patterns of specific city-
industries rather than entire cities. Doing so simply acknowledges
that the determinants of city-level growth may be very differ-
ent for different types of employers. Hence, what drives growth
within the construction industry may be very different from what
drives growth among law firms. Much of this literature has focused
on the importance of industrial diversity—as opposed to indus-
trial concentration—and the role of human capital. Glaeser et al.
(1992) find that cities with diverse industrial compositions tend
to experience faster growth among their dominant industries (i.e.,
those with the most employment), while Henderson (1997) finds
evidence that the concentration of a particular industry tends to
promote its own growth, at least among capital-good-producing
sectors (e.g., machinery, primary metals, transport equipment, elec-
tronics, instruments). Simon (2004) offers evidence that human
capital is an important growth determinant, especially among skill-
intensive industries (e.g., business services).

Our results reveal that studies that use overall average mea-
sures of performance mask a number of interesting differences
between city-level growth phases in their relationships with per-
ceived growth determinants. Most notably, human capital plays a
significant role in driving growth during high phases, but not dur-
ing low phases. Metropolitan areas with abundant quantities of
skilled individuals seem to grow faster during their high phases,
but fare no better than human-capital-scarce metropolitan areas
during their low phases. We also find that the well-documented
negative correlation between manufacturing and job growth is
much stronger during low phases. Overall, our results strongly re-
ject the notion that city-level characteristics influence employment
growth equally across both phases of the business cycle.

The remainder of the paper proceeds as follows: The data set
of city-level employment growth is described in Section 2. In Sec-
tion 3 we describe and motivate the specification of the Markov-
switching model used in our analyses. Section 4 describes our es-
timates of high-phase and low-phase growth rates for the cities in
our sample, while Section 5 describes results relating high-phase
and low-phase growth rates to hypothesized growth determinants.
Section 6 concludes.
2. Data

Our data are from the Current Employment Statistics (or “pay-
roll”) survey of the Bureau of Labor Statistics (BLS). These data
report quarterly estimates of total non-farm employment for all
metropolitan areas in the country.2 We restrict the sample to those
with at least 200,000 in total employment as of the end of the
sample period. Although we have no reason to believe that smaller
cities do not exhibit the characteristics of Markov-switching, mea-
sures of employment for small cities can be extremely volatile due
to measurement error and/or outliers. From this sample of 116
metropolitan areas, we eliminate two, Westchester County, NY, and
Camden, NJ, because the geographic definitions we employ include
the former as part of the New York metropolitan area and the lat-
ter as part of the Philadelphia metropolitan area. Our final sample,
therefore, consists of 114 metropolitan areas.

Our sample period is 1990–2002. The starting date of the sam-
ple is restricted by the oft-found result that the national economy
underwent a structural break in the early 1980s (Stock and Watson,
2003; McConnell and Perez-Quiros, 2000; Kim and Nelson, 1999a).
Further, as found by Owyang et al. (in press), the date at which the
structural break occurred varies a great deal at the state level. In
fact, they find that several states experienced their breaks in the
late 1980s. To help ensure that our data cover only the post-break
period, we begin our sample in 1990. Finally, the end of our sam-
ple period is determined by the availability of final, unrevisable
data for metropolitan areas prior to the changes in metro area def-
initions imposed in 2004. Only through the end of 2002 do the
data satisfy this requirement.

Employment growth varied a great deal across cities over our
sample period. The average quarterly growth rate was 0.37 per-
cent, with a standard deviation of 0.26. The slowest-growing metro
area—Hartford, CT—saw its employment decline at an average rate
of 0.16 percent per quarter, whereas the fastest-growing metro
area—Las Vegas, NV–AZ—experienced average quarterly growth of
1.38 percent. Further evidence of this diversity is provided by
Table 1, which lists the top and bottom ten performers, and Ap-
pendix A, which lists all cities. Not surprisingly, the top performers
are located primarily in the Sun Belt while the bottom performers
tend to be in the Northeast.

3. The Markov-switching model

As an alternative to using the simple average growth rates as
a measure of cities’ economic performance, we use the Hamilton
(1989) Markov-switching model, which describes the economy as
switching between business cycle phases (high and low), each with
its own average growth rate. Formally, let the growth rate of em-
ployment in city n in quarter t, yn,t , be described as follows:

yn,t = μn,Sn,t + εn,t ,

εn,t ∼ i.i.d. N
(
0, σ 2

ε,n

)
,

μn,Sn,t = μn,0(1 − Sn,t) + μn,1 Sn,t , μn,1 < μn,0, (1)

where the growth rate of employment has mean μn,Sn,t , and devi-
ations from this mean growth rate are created by the stochastic
disturbance εn,t . To capture the two business cycle phases, the
mean growth rate in (1) is permitted to switch between a high
and low value, where the switching is governed by a latent state
variable, Sn,t = {0,1}.

2 Urban growth empirics often examine the growth of income, income per capita,
or population rather than employment. Many of these quantities turn out to be
positively associated with employment growth; hence, we believe that many of the
inferences we draw here would extend to the growth of other quantities.
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Table 1
Highest and lowest average growth rates

City Average
growth rate

Highest
Las Vegas, NV–AZ 1.38
Boise City, ID 1.07
Austin–San Marcos, TX 1.05
Phoenix–Mesa, AZ 0.91
Riverside–San Bernardino, CA 0.85
Orlando, FL 0.81
Sarasota–Bradenton, FL 0.78
Raleigh–Durham–Chapel Hill, NC 0.75
West Palm Beach–Boca Raton, FL 0.74
Salt Lake City–Ogden, UT 0.74

Lowest
Buffalo–Niagara Falls, NY 0.02
Youngstown–Warren, OH 0.01
New York, NY 0.005
New Haven–Meriden, CT 0.004
Jersey City, NJ 0.001
Stamford–Norwalk, CT −0.003
Bergen–Passaic, NJ −0.014
Springfield, MA −0.02
Los Angeles–Long Beach, CA −0.05
Hartford, CT −0.16

Note: Growth rates are quarterly percentage changes.

When Sn,t switches from 0 to 1, the growth rate of employ-
ment switches from μn,0 to μn,1. Since μn,1 < μn,0, Sn,t switches
from 0 to 1 at times when employment activity switches from
high-growth to low-growth states.3 Because Sn,t is unobserved,
estimation of (1) requires restrictions on the probability process
governing Sn,t; in this case, we assume that Sn,t is a first-order
two-state Markov chain. This means that any persistence in the
state is completely summarized by the value of the state in the
previous period. Under this assumption, the probability process
driving Sn,t is described by the transition probabilities

Pr[Sn,t = i | Sn,t−1 = j] = pij,n.4

Here we are interested not only in documenting estimates of
the high- and low-phase growth rates, μn,0 and μn,1, but also in
investigating the extent to which a set of variables commonly hy-
pothesized to be determinants of growth are associated with the
high- and low-phase growth rates. To do so, we augment (1) by
modeling the growth rate of city n,μn,Sn,t , using the following
“growth regression”:

μn,Sn,t = δSn,t + X ′
nβSn,t + vn,Sn,t ,

vn,Sn,t ∼ N
(
0, σ 2

v,Sn,t

)
, (2)

where δSn,t is an intercept, Xn is a vector of city-specific character-
istics, and vn,Sn,t is a residual. Among the covariates we consider
in Xn are some of the most commonly used in existing studies.5

3 This identifying restriction is necessary for normalization, as without this re-
striction one can always reverse the definition of the state variable and obtain an
equivalent description of the data.

4 The model in (1) could be complicated on various dimensions, such as allowing
for autoregressive dynamics, which might improve the model’s fit of the data. We
focus on the simple shifting-mean model in (1) because our goal is to date regime
shifts between high and low phases. More highly parameterized models would be
useful if our goal were instead to determine whether the data generating process
for the city-level data was linear or nonlinear, an interesting question that we do
not address here.

5 In constructing these city-level characteristics, we have to construct “approxi-
mations” to the metropolitan areas in New England because the BLS reports em-
ployment data for Metropolitan Statistical Areas (a non-county-based geography)
rather than New England County Metropolitan Areas. A brief description of our ap-
proximation procedure appears in Appendix B.
The variables in Xn are: total resident population and popu-
lation density, both expressed in logarithms; the fraction of the
population 25 years of age or older with a high school diploma and
the fraction with a bachelor’s degree; fractions of the population
that are non-white and foreign-born; shares of total employment
accounted for by manufacturing, services, and finance, insurance,
and real estate (FIRE); the percentage of the local labor force cov-
ered by union contracts; the logarithm of average establishment
size, based on establishments from all non-government industries;
an index of industrial diversity, described below; region dummies;
and three variables characterizing a city’s climate (average January
temperature, average July temperature, and average annual precipi-
tation).6 Because the dependent variable in (2), μn,Sn,t , is measured
for the period 1990–2002, we take 1990 values of the covariates to
avoid endogeneity.7

The rationale for considering each of these quantities is straight-
forward. The two scale variables—population and density—are
meant to capture whether agglomeration effects on productivity
translate into faster growth over time, or whether the disec-
onomies associated with city size (e.g., congestion, high wages,
high rents) produce slower growth.8 The high school, college, non-
white, and foreign-born percentages are intended to isolate the ef-
fects of human capital, while the three industry shares account for
the differential growth rates of certain sectors (especially manufac-
turing as opposed to services) in recent decades.9 Union activity,
of course, directly affects hiring and firing decisions of employers,
and so may influence employment growth.

We include average establishment size to account for the influ-
ence of the plant-size distribution on growth. Glaeser et al. (1992)
and Rosenthal and Strange (2003), for example, have found that
a larger presence of small plants, which is presumably associated
with greater competition, has a positive effect on the growth of
specific industries. In addition, because previous work has stressed
the importance of industrial diversity (i.e., “Jacobs externalities”)
in driving economic growth (e.g., Glaeser et al., 1992), we include
a measure of heterogeneity in the analysis. We quantify diversity
using the following “Dixit–Stiglitz” index, based upon 4-digit em-
ployment data from County Business Patterns:

Diversityn =
(

I∑
i=1

(
Empin

Empn

)0.5
)2

, (3)

where I is the total number of industries in the city, Empin is
employment in industry i in city n, and Empn is total city employ-
ment. By construction, larger values of the index represent greater
industrial heterogeneity.

6 We construct metropolitan area characteristics from county-level observations
using geographic definitions from 1993.

7 Using 1980 values of the covariates did not significantly change our findings.
Still, in spite of the lagged nature of our regressors, some may be concerned that
various unobserved aspects of a metropolitan area (e.g., some amenity) may induce
simultaneity between the regressors and the rate of growth. For example, aspects
that lead to faster growth in a city may also induce highly educated workers to lo-
cate there, creating bias (positive) in the estimated coefficient on human capital.
However, given that our primary aim is to estimate differences between how char-
acteristics, such as human capital, relate to growth across high- and low-growth
phases, we believe that this bias does not inhibit our ability to draw inferences
on this matter. In particular, if the bias is similar in high-growth phases and in
low-growth phases, the difference between the two coefficients will still accurately
estimate the difference in the associations across the two states of the business cy-
cle.

8 It is worth noting that because our sample does not include smaller cities, our
results for density and population might underestimate their effects.

9 We include FIRE in addition to manufacturing and services because the growth
of some cities during the 1990s may have been especially influenced by this broad
sector. Glaeser (2005a, 2005b), for example, suggests that the growth of Boston and
New York in recent decades has been strongly tied to finance and business services.
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Finally, given that there has been such strong regional variation
in city-level growth in the past half century, we attempt to control
for these effects with region dummies and climate features. Cli-
mate, of course, represents a potentially important amenity driving
growth (e.g., Glaeser et al., 2001).10

To estimate the parameters of the model in (1) and (2), as
well as draw inference regarding the unobserved Sn,t , we take a
Bayesian approach. The Bayesian approach has a number of fea-
tures that make it attractive for estimation of Markov-switching
models, with a primary example being the ability to easily in-
corporate uncertainty about model parameters into inference re-
garding Sn,t . Bayesian estimation produces a posterior distribution
for the model parameters, which can be used to extract point es-
timates and measures of dispersion. To evaluate the evidence in
favor of each of the hypothesized growth determinants in Xn , we
use Bayesian posterior model probabilities to compare restricted
and unrestricted versions of the growth equation in (2). In partic-
ular, denote MU as the model in (1) and (2) with the full set of
growth determinants in Xn included, and MR as the model in (1)
and (2) with all but one element of Xn included. We then con-
struct the ratio of posterior model probabilities, or posterior odds
ratio:

P U R = Pr(MU | Y )

Pr(MR | Y )
, (4)

where Y denotes the full set of data used to estimate the model.
Values of P U R greater than unity suggest that the unrestricted
model has higher posterior probability than the restricted model,
and is evidence in favor of the inclusion of the elements of Xn that
were omitted from the restricted model. Appendix C provides de-
tails regarding the Bayesian estimation of the model in (1) and (2)
as well as the methods used to construct the posterior odds ratios.

4. Estimates of high- and low-phase growth rates

4.1. Results for selected cities

To illustrate how the Markov-switching model separates cities’
growth paths into high and low phases, consider six cities that
are roughly representative of the sample: New York, NY; Phoenix–
Mesa, AZ; Cleveland–Lorain–Elyria, OH; Sacramento, CA; Albany–
Schenectady–Troy, NY; and Mobile, AL. The quarterly growth rate
series for these cities are provided in Fig. 1, which also shows point
estimates of the high-phase and low-phase growth rates, μn,0 and
μn,1.11

The wide variety of city-level experiences is readily apparent
from the figures. First, the cities differ a great deal in the lev-
els of and the spread between their high-phase and low-phase
growth rates. New York, for example, experienced relatively mod-
est growth during high phases and suffered deep low phases.12

Phoenix–Mesa had the opposite experience: its high-phase growth
rate was more than three times that of New York, and its low-
phase growth rate was nearly as high as New York’s high-phase

10 Although regional indicators should pick up some of the variation in climate
across metropolitan areas throughout the United States (the South is, after all,
warmer than the Northeast on average), they do so only incompletely because re-
gions tend to be extremely large. For example, Seattle, WA, and Phoenix, AZ, are
both located in the West region. Seattle averages 40 degrees in January, 65.2 de-
grees in July, and 37.19 inches of precipitation. Phoenix averages 53.6 degrees in
January, 93.5 degrees in July, and 7.66 inches of precipitation.
11 As our point estimate, we use the mean value of the Bayesian posterior distri-

bution.
12 Note that our results are not driven by single-quarter spikes in employment

growth such as the one for New York following the September 11, 2001, terror at-
tacks. The model takes account of persistence, and one-quarter shocks like that for
New York in Q4.2001 are treated as stochastic occurrences, as in Eq. (1).
growth rate. In fact, because the level of employment in Phoenix–
Mesa (and several other cities) tends not to recede, even during
its low phase, we cannot refer generally to city-level low phases
as “recessions,” as is done when describing the national business
cycle.

The growth experiences of the other four cities were less ex-
treme than for New York and Phoenix–Mesa, but also demon-
strate the variety of estimated high-phase and low-phase growth
rates: While the high phases in Cleveland–Lorain–Elyria were more
robust than in New York, its low phases were not as deep, al-
though they were noticeably deeper than they were for the other
four cities. Sacramento saw faster growth than Cleveland in both
phases, as did Albany–Schenectady–Troy, although, for the latter,
the difference between the phases was relatively small. Mobile
was the most average of these six cities, with high-phase and low-
phase growth rates close to the means across our sample cities.

Along with the two phase growth rates, overall economic per-
formance depends on the relative occurrence of the two phases.
Put simply, the model determines the probability that a city is
in the low phase for any time period by comparing the actual
growth rate to the two phase growth rates, while also accounting
for the persistence of the series. The estimated low-phase prob-
ability for the six cities is provided by Fig. 2. For reference, the
panels include shaded areas to indicate periods of national reces-
sion as determined by the National Bureau of Economic Research
(NBER) Business Cycle Dating Committee, of which there were two:
Q3.1990 to Q1.1991 and Q1.2001 to Q4.2001. From the figure it is
clear that the model is able to differentiate easily between the two
phases in that the low-phase probabilities tend to shift sharply be-
tween values close to zero and one.

There were significant differences in both the frequency and
timing of city-level low phases. New York’s low phase lasted more
than a year beyond the end of the 1990–1991 NBER recession, al-
though its 2001 low phase was relatively in synch with the 2001
NBER recession. The opposite occurred for Cleveland–Lorain–Elyria,
which experienced a short low phase in 1990–1991 and a long one
in 2000–2002. In contrast, both low phases in Phoenix–Mesa be-
gan earlier and ended later than NBER recessions.

Some cities either did not have low phases during periods of
national recession or had low phases of their own that were not
widespread across the nation. Sacramento, for example, did not
even enter its low phase until after the 1990–1991 NBER recession
had ended, and the city completely missed the 2001 recession. Mo-
bile, on the other hand, missed the first national recession but saw
the second. Albany–Schenectady–Troy had the worst luck of the
six cities in that it was hit by the two NBER recessions and an
idiosyncratic low phase in 1995–1996.

4.2. Results for all cities

A few summary statistics describing the estimated growth rates
within each of the two phases, along with overall average rates
of growth, appear in Table 2. The entire set of results for our 114
cities is provided by Appendix A. From Table 2, we can see that

Table 2
Summary statistics for city-level business cycle phases

Variable Mean Standard
deviation

Minimum Maximum

Average growth rate 0.37 0.26 −0.16 1.38
High-phase growth rate 0.62 0.27 0.12 1.49
Low-phase growth rate −0.33 0.34 −1.45 0.56
Fraction of time in low phase 0.27 0.09 0.12 0.70
Switches into low phase 1.91 0.74 1 4

Note: Statistics calculated across 114 metropolitan areas. Growth rates represent
quarterly percentage changes.
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Fig. 1. Employment growth rates for selected cities. Note: Thick black (gray) line is estimated high-phase (low-phase) growth rate.
while low phases are indeed periods of slower employment growth
than are high phases—the average estimated low-phase growth
rate is −0.33 percent per quarter and the average estimated high-
phase growth rate is 0.62 percent—there is a fair amount of varia-
tion within the sample. Low-phase growth rates range from −1.45
percent to 0.56 percent; high-phase rates extend from 0.12 percent
to 1.49 percent.

Although cities did tend to experience decreases in their em-
ployment levels during low phases, some actually continued to
grow during them, as described above for Phoenix–Mesa. This



M.T. Owyang et al. / Journal of Urban Economics 64 (2008) 538–550 543
Fig. 2. Low-phase probabilities for selected cities. Note: Gray shaded areas indicate national NBER recessions.
result can also be seen in Table 3, which identifies the cities with
the highest and lowest estimated growth rates in each business cy-
cle phase. Metropolitan areas located in the South and the West,
not surprisingly, tended to have had the highest rates of growth
across both phases. Las Vegas, for instance, had the highest high-
phase growth rate, 1.49 percent, as well as the highest low-phase
growth rate, 0.56 percent. The slowest growers in either phase, on
the other hand, tended to be located in states lying within the
northeastern quadrant of the country, such as New York, New Jer-
sey, Massachusetts, Connecticut, and Ohio, although some cities in
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Table 3
Highest and lowest growth rates by business cycle phase

City High-phase
growth rate

City Low-phase
growth rate

Highest Highest
Las Vegas, NV–AZ 1.49 Las Vegas, NV–AZ 0.56
Phoenix–Mesa, AZ 1.42 Albuquerque, NM 0.26
Austin–San Marcos, TX 1.30 Riverside–San Bernardino, CA 0.25
Boise City, ID 1.22 Phoenix–Mesa, AZ 0.23
Albuquerque, NM 1.12 Tucson, AZ 0.20
Orlando, FL 1.09 Fresno, CA 0.19
Riverside–San Bernardino, CA 1.05 San Antonio, TX 0.19
Tucson, AZ 1.02 Charleston–North Charleston, SC 0.06
Atlanta, GA 1.02 Houston, TX 0.05
Tampa–St Petersburg–Clearwater, FL 0.99 Reno, NV 0.04

Lowest Lowest
Scranton–Wilkes–Barre–Hazelton, PA 0.27 San Francisco, CA −0.84
New Haven–Meriden, CT 0.26 New Haven–Meriden, CT −0.87
Newark, NJ 0.26 Providence–Fall River–Warwick, RI–MA −0.90
Bergen–Passaic, NJ 0.25 Boston, MA–NH −0.92
Youngstown–Warren, OH 0.25 Stamford–Norwalk, CT −0.95
Gary, IN 0.23 Bergen–Passaic, NJ −0.96
Rochester, NY 0.21 New York, NY −1.01
Syracuse, NY 0.21 Jersey City, NJ −1.07
Buffalo–Niagara Falls, NY 0.16 Worcester, MA–CT −1.20
Hartford, CT 0.12 San Jose, CA −1.45

Note: Growth rates represent quarterly percentage changes.
the South and the West (e.g., San Francisco and San Jose) had rel-
atively poor performance during their low phases.13

There is a fair amount of overlap between the two sets of phase
growth rates. Cities that grew the fastest during their high phases
also tended to grow fastest during their low phases. This can be
seen more formally from the correlation between the two sets of
estimated growth rates across the 114 cities in the sample: 0.60.
There is also some overlap with overall rates of growth. The corre-
lation between low-phase growth rates and overall average growth
is 0.70; the correlation between high-phase growth rates and over-
all average growth is 0.93.

Table 2 also records a statistic measuring the frequency of
the low-growth phase, namely the expected value that Sn,t = 1
over the sample period. Summary statistics for this expected value
appear in the second-to-last row of Table 2.14 On average, the
metropolitan areas in the sample spent approximately 27 percent
of the time in a low phase.15 Yet, as indicated by the standard
deviation of 0.09, there is good deal of variation within the sam-
ple. One metropolitan area, Philadelphia, PA, spent only 12 percent
of the time in its low phase, whereas Honolulu, HI, was in its low
phase 70 percent of the time. There were some regional differences
in the frequency of the low phase, as cities in the West tended to
have experienced the low phase more frequently while cities in
the Northeast experienced it less frequently.16

More information about the top and bottom of the distribution
of low-phase frequencies can be gathered from Table 4, which re-
ports the cities with the 10 highest and lowest frequencies. One

13 The average low-phase growth rates by region are: Northeast, −0.66; Midwest,
−0.33; South, −0.16; West, −0.22. The average high-phase growth rates by region
are: Northeast, 0.34; Midwest, 0.49; South, 0.83; West, 0.87.
14 The low-phase frequencies for all cities are in the second-to-last column in the

table in Appendix A.
15 In contrast, according to the NBER, the national economy was in recession 13.5

percent of the time. There was a significant divergence, however, between official
recessions and periods of negative employment growth at the national level. Ap-
plying the Markov-switching model without the growth equation to national data
indicates that the United States was in an employment recession for 35 percent of
the sample period.
16 The low-phase frequencies by region are: Northeast, 0.23; Midwest, 0.26; South,

0.27; West 0.34.
Table 4
Highest and lowest low-phase frequencies

City Fraction of time
in low phase

Highest
Honolulu, HI 0.70
Albuquerque, NM 0.63
Bakersfield, CA 0.48
Ventura, CA 0.48
San Diego, CA 0.46
Charleston–North Charleston, SC 0.44
Phoenix–Mesa, AZ 0.43
Tucson, AZ 0.43
Orange County, CA 0.41
Oakland, CA 0.41

Lowest
Tulsa, OK 0.17
Worcester, MA-CT 0.16
Providence–Fall River–Warwick, RI–MA 0.16
Appleton–Oshkosh–Neenah, WI 0.16
Denver, CO 0.16
Austin–San Marcos, TX 0.16
Kalamazoo–Battle Creek, MI 0.16
Madison, WI 0.16
Boise City, ID 0.15
Philadelphia, PA–NJ 0.12

Note: Figures represent the proportion of the 1990–2002 period spent in a low
phase.

important result is that low average growth rates were not typi-
cally driven by the frequency of the low phase. Overall, the corre-
lation between average growth and low-phase frequency is −0.01.
This lack of a pattern is highlighted by the table. Some of the
metropolitan areas behaved just as one might expect, at least in
the sense that some cities with particularly high rates of average
growth (e.g., Austin–San Marcos, TX, and Boise, ID) spent relatively
little time in the low phase, whereas some slow growers (e.g., Hon-
olulu, HI) spent a large fraction of time in the low phase. Yet, there
are a number of results that are somewhat surprising. Fast grow-
ers like Phoenix–Mesa, AZ, and Albuquerque, NM, actually spent
relatively long periods of time in the low phase (respectively, 43
percent and 63 percent). On the other hand, some slow growers,
including Philadelphia, PA, and Worcester, MA–CT, spent relatively
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little time in their low phase (respectively, 12 percent and 16 per-
cent).17

As illustrated by Fig. 2, cities tended to switch infrequently from
one phase to another and then to stay in their new phase for
at least several quarters.18 Also, although there was a tendency
for cities to have experienced their low phases around the pe-
riods when the national economy was in recession, there was a
great deal of variation. Some cities did not switch at all around
national recessions, whereas other cities switched into their low
phases even though the overall economy was expanding. The vari-
ety of experiences is summarized by the last row of Table 2: Cities
switched into their low phases an average of 1.9 times during the
sample period, slightly less frequently than did the national econ-
omy. There were 31 cities that switched only once into their low
phase, and five—Augusta, GA; Johnson City, TN; Tucson, AZ; Ven-
tura, CA; and Wichita, KS—that switched four times.19

5. Estimates of growth regressions

In this section we describe the estimated coefficients on the hy-
pothesized growth determinants included in the growth regression
in (2), as well as the statistical evidence in support of each growth
determinant. As a means of comparison, we first estimate a ver-
sion of (1) and (2) in which the high- and low-phase growth rates
are assumed to be equal, so that μn,0 = μn,1. With this restric-
tion there is no regime switching between high- and low-phase
growth rates, and the model in (1) and (2) collapses to a simple
growth regression applied to average growth rates, a specification
that forms the basis of the extant literature on the determinants
(or, at least, correlates) of economic growth in cities. With results
for this baseline model in hand, we then present results for the full
Markov-switching model, which enables us to investigate how the
growth determinants influence high- and low-phase growth rates
separately.

5.1. Results for average growth rates

Table 5 presents the estimated coefficients of the growth re-
gression in (2) for the model without Markov-switching, so that
the growth determinants are used to explain average growth rates.
The first column of Table 5 reports the mean of the Bayesian pos-
terior distribution for each of these coefficients, which serves as
our point estimate, while the second column reports the standard
deviation of the posterior distribution. The final column holds the
posterior odds ratio from (4), P U R , comparing the model includ-
ing all the growth determinants to a restricted model in which
the growth determinant in that row is eliminated. Again, values
of P U R > 1 indicate that the data prefer the model that includes
the growth determinant. To facilitate discussion, but with a slight
abuse of terminology, we refer to growth determinants for which
P U R > 1 as being “statistically significant.”

17 We should note that for a small number of cities our model does not do as
good a job in separating the business cycle into two distinct phases as it did for
the six sample cities. The experience of Philadelphia, for example, is probably more
appropriately described as having three phases. The downturn in the early 1990s
was so deep that the model characterizes the much shallower downturn of 2000–
2001 as being in the high phase, which accounts for the infrequency of the low
phase for Philadelphia. Put another way, it is likely that a three-phase model would
characterize the early 1990s period as a medium phase. Presently, however, we are
not particularly interested in fit and, because we have no reason to believe that any
error of this sort is related to any of our explanatory variables, our findings should
not be biased as a result.
18 Following convention, an economy is in a low phase when its probability of a

low phase is at least 50 percent.
19 The last column of Appendix A reports the number of switches that were expe-

rienced by each city.
Table 5
Growth determinants and average growth rates

Posterior
mean

Posterior
Std. Dev.

Posterior
odds

Log density −0.025 0.039 0.02
Log population 0.004 0.062 0.03
% High school 0.026 0.938 0.42
% College 0.844 0.696 0.67
% Non-white −1.135 0.306 365.50
% Foreign-born −0.280 0.478 0.26
% Manufacturing −1.305 0.605 2.79
% Services −0.654 0.723 0.49
% FIRE −0.673 1.101 0.61
% Union coverage −0.249 0.566 0.29
Industrial diversity −0.0001 0.001 0.00
Log avg. plant size 0.166 0.244 0.14
Avg. January temp. 0.003 0.004 0.00
Avg. July temp. 0.017 0.007 0.10
Annual precipitation −0.002 0.003 0.00
Northeast region −0.208 0.121 0.23
Midwest region −0.081 0.109 0.06
West region 0.103 0.141 0.08

The results in Table 5 demonstrate a number of patterns that
have already been well documented. Beginning with the variables
meant to measure human capital, both education variables pro-
duce a positive coefficient, a result that is generally interpreted as
suggesting that higher levels of human capital are associated with
faster rates of employment growth. However, neither variable is
deemed statistically significant by the posterior odds ratio.20 The
fraction of a metropolitan area’s resident population that is non-
white generates a strongly significant negative coefficient, which
may also reflect a human capital effect. In particular, racial minori-
ties may possess lower levels of human capital for reasons that
differ from lower levels of education per se, such as less work ex-
perience due to greater instability in their job histories.

Among the three industry shares and the three local labor-
market characteristics (unionization, industrial diversity, and av-
erage plant size), only the manufacturing share is significantly
associated with average employment growth. Larger fractions of
employment initially engaged in manufacturing tend to be accom-
panied by lower rates of growth subsequently, which is quite rea-
sonable in light of the decline in manufacturing employment over
the last several decades.

None of the estimated region and climate coefficients are sta-
tistically significant. In terms of point estimates, we see that cities
with higher January and July temperatures and lower precipitation
exhibited faster growth, and that metropolitan areas in the South
and West grew faster than those in either the Midwest or the
Northeast.21 In terms of their signs, these results are quite stan-
dard.

We find little association between growth and either of our
scale measures. Hence, while large, dense urban areas tend to be
characterized by higher productivity, they do not grow faster than
smaller markets. There is also little evidence that employment
growth is associated with the presence of foreign-born individuals
or high rates of unionization, at least after accounting for indus-
trial composition and geographic effects. We see little association
between growth and FIRE’s share of total employment, suggesting
that, although this sector may have helped underlie the success

20 An earlier version of this paper estimates the model in two stages—Markov-
switching and then growth regressions—and finds stronger support for the role of
human capital. Specifically, the coefficients on the share with a college degree and
the percent non-white are both statistically significant and have the expected signs.
See Owyang et al. (2007).
21 Mean average growth rates across metropolitan areas by region are: Northeast,

0.11; Midwest, 0.29; South, 0.49; West, 0.54.
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of some cities in the United States (e.g., Boston and New York—see
Glaeser, 2005a, 2005b) in recent decades, it did not impart a boost
to all cities during the 1990–2002 period. There is also little as-
sociation between our index of industrial diversity and growth. As
such, we do not find any evidence of Jacobs externalities on overall
metropolitan area-level employment growth. In addition, employ-
ment growth is not significantly tied to average establishment size.
Both of these results stand somewhat at odds with the findings of
Glaeser et al. (1992), who find that industries in cities with diverse
economies and relatively small firms grow faster.22

5.2. Results for high- and low-phase growth rates

We now turn to estimates of the coefficients of the growth re-
gression in (2) obtained from the model with Markov-switching
between high- and low-phase growth rates. Table 6 presents the
coefficient estimates and measures of statistical significance for the
high-phase growth rates, while Table 7 presents these measures for
the low-phase growth rates.

Beginning with Table 6, several of the results look similar
to those derived from the average growth rates (Table 5). For
example, the non-white fraction and manufacturing share each
again produce significantly negative coefficients. There are, how-
ever, some differences between these findings and those for the
average growth rates in Table 5. Most notably, the coefficient on
the college fraction is deemed to be statistically significant for the
high-phase growth rates, whereas it was insignificant for the av-
erage growth rates. The point estimate for this coefficient is also
substantially larger for the high-phase growth rates than it was for
average growth rates. This result suggests that education, and more
generally human capital, may be more important in high-growth
phases than it is for overall growth.

As noted above, much of the urban literature has argued that
small firms tend to be associated with faster growth because they
enhance competition and, thus, productivity over time. We found
no significant relationship between average plant size and average
growth, and this is confirmed when we consider only high-phase
growth rates. Interestingly, the coefficient for high-phase growth
remains positive and is larger than it was for average growth,
which moves the estimated relation between growth and estab-
lishment size further from the negative relationship argued for in
much of the existing literature.

Turning to the results for the low-phase growth rates in Ta-
ble 7, we see a different set of significant coefficients than we
found for the high-phase growth rates. In particular, neither the
college fraction nor the non-white percentage of the population
is significant. If we, once again, interpret these variables as mea-
suring the human capital of the local population, these findings
offer little evidence that human-capital-abundant metropolitan ar-
eas experience milder low phases than human-capital-poor ones.
This result is somewhat surprising because highly educated work-
ers tend to experience lower rates of job displacement and unem-
ployment than less-educated workers.23 Hence, one might expect
to see fewer job losses (i.e., higher employment growth) in highly
educated cities than in less-educated cities. We find little support
for this idea.

The variable that offers the strongest association with low-
phase growth is the manufacturing share of total employment.
The estimated coefficient is significant, and suggests that a 10-
percentage-point rise in manufacturing’s share of total employ-

22 The discrepancy between the two sets of results may emanate from the fact that
Glaeser et al. (1992) look at employment growth within a city’s largest industries
rather than overall employment growth.
23 Recent data on unemployment rates by educational attainment level are re-

ported by the BLS at http://www.bls.gov/news.release/empsit.t04.htm.
Table 6
Growth determinants and high-phase growth rates

Posterior
mean

Posterior
Std. Dev.

Posterior
odds

Log density −0.009 0.044 0.02
Log population −0.019 0.070 0.03
% High school −0.198 1.040 0.47
% College 1.254 0.760 1.29
% Non-white −1.058 0.376 9.03
% Foreign–born −0.384 0.564 0.31
% Manufacturing −1.187 0.679 1.39
% Services −0.759 0.866 0.56
% FIRE −0.540 1.240 0.61
% Union coverage −0.496 0.660 0.39
Industrial diversity 0.0001 0.001 0.00
Log avg. plant size 0.292 0.300 0.22
Avg. January temp. 0.008 0.005 0.01
Avg. July temp. 0.017 0.008 0.04
Annual precipitation −0.003 0.004 0.00
Northeast region −0.127 0.142 0.09
Midwest region −0.011 0.131 0.06
West region 0.170 0.157 0.12

Table 7
Growth determinants and low-phase growth rates

Posterior
mean

Posterior
Std. Dev.

Posterior
odds

Log density −0.102 0.073 0.08
Log population 0.016 0.107 0.05
% High school 1.098 1.424 0.86
% College −0.198 1.069 0.49
% Non-white −0.002 0.542 0.24
% Foreign-born −0.797 0.848 0.63
% Manufacturing −2.361 0.950 9.65
% Services −0.787 1.250 0.73
% FIRE −0.397 1.653 0.74
% Union coverage 0.071 0.949 0.43
Industrial diversity −0.0003 0.002 0.00
Log avg. plant size 0.181 0.450 0.21
Avg. January temp. 0.005 0.007 0.00
Avg. July temp. 0.008 0.011 0.01
Annual precipitation −0.009 0.006 0.01
Northeast region −0.195 0.215 0.14
Midwest region −0.008 0.207 0.09
West region −0.156 0.260 0.14

ment corresponds to a 0.24-percentage-point decrease in the rate
of growth that a city experiences while in the low phase. Recall
that, although we also found a negative association between man-
ufacturing and high-phase growth, it was much weaker: on the or-
der of one half as high. Therefore, manufacturing’s well-established
drag on employment growth is much stronger during low phases
than during high phases.

The region indicators and climate variables offer only limited
explanatory power. Nevertheless, the point estimates from the re-
gion dummies may provide some interesting insights into geo-
graphic patterns of low-phase growth. For high-phase growth, the
West region indicator yielded a positive coefficient. Although it is
not significant, the West region indicator produces a negative co-
efficient for low-phase growth, suggesting that low phases might
have been somewhat worse in western metropolitan areas than in
the South.

As with all of the other results, we see no association between
low-phase growth and either rates of union coverage or the ex-
tent of industrial diversity. This latter result suggests that while
cities with more heterogeneous economies might experience lower
rates of unemployment (e.g., Simon, 1988), their low phases are
not milder in terms of higher rates of employment growth.

http://www.bls.gov/news.release/empsit.t04.htm
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6. Conclusions

This paper examined the determinants of employment growth
in metro areas using a Markov-switching model to separate cities’
growth paths into high and low phases, each with its own growth
rate. We estimated the effects of a variety of factors separately
for the average growth rate, the high-phase growth rate, and the
low-phase growth rate, and found different sets of statistically sig-
nificant variables across the three types of growth rates.

One characterization of our results is that the growth determi-
nants used in the urban growth literature seem much better at
explaining high-phase growth than low-phase growth. This might
be seen as a Tolstoy theorem of urban growth: Happy cities are
all alike; every unhappy city is unhappy in its own way.24 Specifi-

24 We thank Ed Coulson for suggesting this interpretation.
cally, we found that growth in the high phase is related to several
of the usual variables, including human capital, but that low-phase
growth is related only to the relative importance of manufactur-
ing. Also, the relative overall performance for cities—their average
growth rates—are not correlated with the frequency with which
they are in their low phase.
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Appendix A
Average and phase growth rates and low-phase frequencies for all 114 cities

Average
growth rate

High-phase
growth rate

Low-phase
growth rate

Low-phase
frequency

Switches into
low phase

Akron OH PMSA 0.266 0.454 −0.248 0.289 2
Albany–Schenectady–Troy NY 0.158 0.414 −0.332 0.348 3
Albuquerque NM 0.603 1.123 0.262 0.626 2
Allentown–Bethlehem–Easton PA 0.251 0.431 −0.278 0.311 2
Ann Arbor MI PMSA 0.341 0.490 −0.485 0.223 2
Appleton–Oshkosh–Neenah WI 0.503 0.597 −0.152 0.160 1
Atlanta GA 0.693 1.016 −0.115 0.319 2
Augusta–Aiken GA–SC 0.198 0.435 −0.194 0.376 4
Austin–San Marcos TX 1.051 1.304 −0.402 0.158 1
Bakersfield CA 0.430 0.876 0.043 0.485 2
Baltimore MD PMSA 0.152 0.392 −0.488 0.261 2
Baton Rouge LA 0.526 0.728 −0.161 0.213 1
Bergen–Passaic NJ PMSA −0.014 0.254 −0.960 0.216 1
Birmingham AL 0.372 0.556 −0.163 0.250 2
Boise City ID 1.069 1.219 −0.066 0.154 1
Boston MA–NH PMSA 0.094 0.519 −0.924 0.290 2
Buffalo–Niagara Falls NY 0.018 0.164 −0.632 0.185 2
Charleston–North Charleston SC 0.522 0.827 0.057 0.439 2
Charlotte–Gastonia–Rk Hill NC–SC 0.559 0.903 −0.286 0.309 2
Chattanooga TN–GA 0.317 0.588 −0.238 0.352 3
Chicago IL PMSA 0.212 0.419 −0.422 0.262 2
Cincinnati OH–KY–IN PMSA 0.284 0.480 −0.330 0.243 2
Cleveland–Lorain–Elyria OH PMSA 0.073 0.333 −0.665 0.261 2
Columbia SC 0.486 0.820 −0.357 0.280 2
Columbus OH 0.453 0.652 −0.263 0.222 2
Dallas TX PMSA 0.613 0.962 −0.382 0.259 2
Dayton–Springfield OH 0.034 0.282 −0.487 0.311 2
Denver CO PMSA 0.616 0.839 −0.485 0.158 1
Des Moines IA 0.433 0.643 0.011 0.330 2
Detroit MI PMSA 0.170 0.453 −0.587 0.292 2
El Paso TX 0.429 0.561 −0.152 0.201 2
Ft Lauderdale FL PMSA 0.641 0.836 −0.161 0.202 2
Fort Wayne IN 0.229 0.482 −0.425 0.270 2
Fort Worth–Arlington TX PMSA 0.565 0.869 −0.241 0.277 2
Fresno CA 0.564 0.693 0.194 0.310 1
Gary IN PMSA 0.133 0.230 −0.216 0.281 1
Gr Rapids–Muskegon–Holland MI 0.503 0.738 −0.405 0.249 2
Grnsboro–Winston–Salem–Hi Pt NC 0.304 0.562 −0.551 0.228 2
Grnville–Spartanb–Anderson SC 0.314 0.608 −0.713 0.200 2
Harrisburg–Lebanon–Carlisle PA 0.307 0.385 0.009 0.267 2
Hartford CT −0.160 0.115 −0.794 0.242 1
Honolulu HI 0.068 0.607 −0.115 0.698 2
Houston TX PMSA 0.590 0.879 0.050 0.374 3
Indianapolis IN 0.426 0.584 −0.088 0.264 2
Jackson MS 0.425 0.638 0.027 0.369 2
Jacksonville FL 0.537 0.859 −0.092 0.334 2
Jersey City NJ PMSA 0.001 0.354 −1.069 0.267 3
Johnson City–Kingsp–Bris TN–VA 0.312 0.509 −0.250 0.293 4
Kalamazoo–Battle Creek MI 0.155 0.366 −0.823 0.156 2
Kansas City MO–KS 0.375 0.625 −0.342 0.253 2
Knoxville TN 0.563 0.680 0.007 0.229 1
Lancaster PA 0.321 0.425 −0.288 0.191 1

(continued on next page)
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Appendix A (continued)

Average
growth rate

High-phase
growth rate

Low-phase
growth rate

Low-phase
frequency

Switches into
low phase

Lansing–East Lansing MI 0.222 0.376 −0.131 0.283 1
Las Vegas NV–AZ 1.375 1.493 0.559 0.297 2
Lexington KY 0.423 0.676 −0.413 0.222 1
Little Rock–N Little Rock AR 0.467 0.614 −0.066 0.225 2
LA–Long Beach CA PMSA −0.050 0.384 −0.619 0.384 2
Louisville KY–IN 0.360 0.610 −0.511 0.220 2
Madison WI 0.623 0.690 0.001 0.155 1
Memphis TN–AR–MS 0.384 0.634 −0.097 0.366 2
Miami FL PMSA 0.269 0.553 −0.489 0.261 2
Mdlesex–Somerset–Hunterd NJ PMSA 0.323 0.605 −0.600 0.250 2
Milwaukee–Waukesha WI PMSA 0.219 0.399 −0.463 0.215 2
Minneapolis–St Paul MN–WI 0.428 0.608 −0.265 0.217 2
Mobile AL 0.506 0.692 −0.263 0.204 1
Monmouth–Ocean NJ PMSA 0.364 0.548 −0.579 0.173 1
Nashville TN 0.592 0.840 −0.195 0.256 2
Nassau–Suffolk NY PMSA 0.149 0.366 −0.752 0.198 1
New Haven–Meriden CT PMSA 0.004 0.263 −0.870 0.194 1
New Orleans LA 0.215 0.414 −0.146 0.342 3
New York NY PMSA 0.005 0.277 −1.009 0.241 2
Newark NJ PMSA 0.042 0.259 −0.811 0.203 1
Norfolk–Va Bch–Nwprt Nws VA–NC 0.377 0.460 −0.133 0.174 1
Oakland CA PMSA 0.363 0.722 −0.197 0.409 2
Oklahoma City OK 0.450 0.627 −0.091 0.243 3
Omaha NE–IA 0.527 0.667 0.040 0.259 3
Orange County CA PMSA 0.381 0.866 −0.323 0.412 2
Orlando FL 0.811 1.089 −0.203 0.222 2
Philadelphia PA–NJ PMSA 0.146 0.280 −0.767 0.124 1
Phoenix–Mesa AZ 0.908 1.419 0.228 0.434 2
Pittsburgh PA 0.198 0.304 −0.249 0.211 2
Portland–Vancouver OR–WA PMSA 0.533 0.801 −0.468 0.217 2
Providence–Fall Riv–Warw RI–MA 0.061 0.320 −0.899 0.161 1
Raleigh–Durham–Chapel Hill NC 0.749 0.934 −0.125 0.228 3
Reno NV 0.622 0.860 0.044 0.296 2
Richmond–Petersburg VA 0.356 0.589 −0.318 0.256 2
Riverside–S Bernardino CA PMSA 0.853 1.052 0.250 0.291 1
Rochester NY 0.086 0.211 −0.493 0.198 1
Sacramento CA PMSA 0.627 0.830 −0.166 0.199 1
St Louis MO–IL 0.178 0.421 −0.251 0.359 2
Salt Lake City–Ogden UT 0.740 0.955 −0.229 0.181 1
San Antonio TX 0.647 0.838 0.190 0.302 2
San Diego CA 0.501 0.889 0.031 0.464 2
San Francisco CA PMSA 0.085 0.601 −0.838 0.354 2
San Jose CA PMSA 0.162 0.665 −1.449 0.192 1
Sarasota–Bradenton FL 0.782 0.991 −0.098 0.208 2
Scranton–Wilkes–Barre–Hazl PA 0.112 0.269 −0.375 0.261 2
Seattle–Bellevue–Evrtt WA PMSA 0.400 0.654 −0.584 0.207 1
Springfield MA −0.022 0.298 −0.700 0.261 2
Stamford–Norwalk CT PMSA −0.003 0.426 −0.952 0.318 2
Stockton–Lodi CA 0.536 0.655 0.015 0.241 3
Syracuse NY 0.041 0.207 −0.484 0.246 2
Tampa–St Pete–Clearwater FL 0.640 0.992 −0.130 0.320 2
Toledo OH 0.159 0.436 −0.635 0.252 2
Trenton NJ PMSA 0.214 0.462 −0.391 0.347 3
Tucson AZ 0.623 1.020 0.201 0.429 4
Tulsa OK 0.434 0.630 −0.425 0.167 1
Ventura CA 0.438 0.845 −0.038 0.481 4
Washington DC–MD–VA–WV PMSA 0.353 0.604 −0.181 0.320 3
W Palm Bch–Boca Raton FL 0.742 0.974 −0.087 0.230 1
Wichita KS 0.279 0.601 −0.234 0.381 4
Wilmington–Newark DE–MD PMSA 0.302 0.673 −0.375 0.356 2
Worcester MA–CT PMSA 0.084 0.360 −1.199 0.165 1
Youngstown–Warren OH 0.013 0.247 −0.429 0.322 2
Appendix B

Data on population, land area, education, race, and place
of birth come from the US Census of Population and Hous-
ing from 1990 as reported by the USA Counties 1998 on CD-
ROM. Metropolitan area observations are constructed from county-
level data according to 1993 definitions, which are found at
http://www.census.gov/population/www/estimates/pastmetro.html.
Climate data are derived for the main city of each metropolitan
area from County and City Data Book, 2000 Edition. Average annual
precipitation is based on an average over the 1961–1990 period.

There are seven metropolitan areas in New England for which
the BLS reports data at the metropolitan statistical area (MSA)
or primary metropolitan statistical area (PMSA) level (Boston,
Hartford, New Haven–Meriden, Providence–Fall River–Warwick,
Springfield, Stamford–Norwalk, and Worcester). Because MSAs and
PMSAs in New England are based on towns rather than counties,
counties often have parts lying in different metro areas. Because
most of the data used in the analysis are reported at the county

http://www.census.gov/population/www/estimates/pastmetro.html
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level, we have to construct approximations of all of the non-
employment variables for these seven New England metro areas.
We do so by aggregating all counties with some part lying in an
MSA or PMSA. In practice, of course, this procedure implies that
certain counties are counted as part of more than one metro area.

Because metropolitan areas frequently cross state boundaries,
and US Census regions are based on states, some metropolitan ar-
eas have parts lying in more than one region. We handle these
cases by assigning them to the region in which the majority of
their populations reside.

Unionization rates at the metropolitan area level are based
upon state-level rates reported by Hirsch et al. (2001). These can
be accessed at http://www.unionstats.com. Metropolitan-area-level
union rates are calculated as weighted averages of their constituent
state-level rates, where the weights are given by the fraction of
each metro area’s labor force located in each state.

County Business Patterns provides data covering total employ-
ment and numbers of establishments for most non-governmental
industries at a 4-digit level of aggregation. Due to disclosure re-
strictions, employment is sometimes reported as a range: 0–19;
20–99; 100–249; 250–499; 500–999; 1000–2499; 2500–4999;
5000–9999; 10,000–24,999; 25,000–49,999; 50,000–99,999;
100,000 or more. Where this occurs, we impute the employment
level by taking the midpoint of the range. The largest range was
not reported for any of the county-industries in the sample. Total
employment in a metropolitan area is calculated by summing the
employment levels across all industries so that employment shares
sum to 1.

Appendix C

This appendix provides details regarding the Bayesian estima-
tion of the model in Eqs. (1) and (2), as well as the construction of
posterior odds ratios used for model comparison. Eqs. (1) and (2)
can be combined as follows:

yn,t = δSn,t + X ′
nβSn,t + vn,Sn,t + εn,t , (C.1)

where n = 1, . . . , N, εn,t ∼ i.i.d. N(0, σ 2
ε,n), vn,Sn,t ∼ N(0, σ 2

v,Sn,t
),

and Sn,t = {0,1} follows a two-state Markov process with transi-
tion probabilities Pr[Sn,t = i | Sn,t−1 = j] = pij,n . The model in (C.1)
is a random-effects model with regime-switching parameters. Ac-
cordingly, estimation of the model will proceed by modifying ex-
isting procedures for Bayesian estimation of random-effects models
to allow for regime switching.

In developing the Bayesian estimation algorithm presented be-
low, we make the following independence assumptions: First, we
assume that the model residual, εn,t , is uncorrelated across cities
at all leads and lags, so that Cov(εn=q,tεn=r,t−w) = 0,∀w and q �= r.
Second, we assume that the state variable, Sn,t , is independent
across cities at all leads and lags. While certainly restrictive, these
assumptions are necessary for estimation feasibility. In particular,
without the first assumption, inference regarding the unobserved
state variable would require consideration of 2N alternative com-
binations of S1,t , . . . , SN,t . The second assumption eliminates es-
timation of a very large (2N × 2N ) transition probability matrix
required to describe the joint evolution of S1,t, . . . , SN,t . These as-
sumptions will be exploited in the Bayesian estimation algorithm
developed below.

Bayesian estimation requires the specification of prior den-
sity functions for the model parameters. Divide the model pa-
rameters into the following blocks, given by β̃ = (δ0, δ1, β0, β1)

′ ,
σ 2

v,0, σ
2
v,1, σ̃ 2

ε = (σ 2
ε,1, . . . , σ

2
ε,N)′ , p̃00 = (p00,1, . . . , p00,N )′ and

p̃11 = (p11,1, . . . , p11,N)′ . We assume prior independence across all
parameter blocks, as well as prior independence of the elements
of σ̃ 2

ε , p̃00, and p̃11. The joint prior is then given by:
f
(
β̃, σ 2

v,0, σ
2
v,1, σ̃

2
ε , p̃00, p̃11

)
= f

(
β̃
)

f
(
σ 2

v,0

)
f
(
σ 2

v,1

) N∏
n=1

f
(
σ 2

ε,n

) N∏
n=1

f (p00,n)

N∏
n=1

f (p11,n). (C.2)

We define f (β̃) as a multivariate Gaussian random variable, with a
mean vector that has its first two elements set equal to 1 and −1
respectively, and all other elements set equal to 0, and a variance-
covariance matrix set equal to a diagonal matrix with all diagonal
elements set equal to 5. For each f (σ 2

ε,n), as well as f (σ 2
v,0) and

f (σ 2
v,1), we use an improper inverted-gamma density function.25

For each p00,n and p11,n , we specify Beta prior densities, given by
β(9,1) and β(8,2) respectively. These priors have means of 0.9
and 0.8 and standard deviations of 0.09 and 0.12, respectively.

Given these prior density functions, Bayesian estimation aims
to characterize the joint posterior density of the model parame-
ters. We are also interested in posterior densities for other quan-
tities of interest, including the unobserved state variables, S̃ =
( S̃1, S̃2, . . . , S̃N ), where S̃n = (Sn,1, . . . , Sn,T )′ , and the random ef-
fects, ṽ0 = (v1,0, v2,0, . . . , v N,0)

′ and ṽ1 = (v1,1, v2,1, . . . , v N,1)
′ .

Although an analytic characterization of the joint posterior den-
sity of all objects of interest is not available, we are able to obtain
samples from this posterior using the Gibbs Sampler. Briefly, the
Gibbs Sampler, introduced by Geman and Geman (1984), Tanner
and Wong (1987) and Gelfand and Smith (1990), is an algorithm
that produces random samples from the joint density of a group
of random variables by repeatedly sampling from the full set of
conditional density functions. Denote the data used in estimation
as Y . A full set of conditional posterior density functions for the
regime-switching random-effects model is then:

g
(
β̃

∣∣ σ 2
v,0, σ

2
v,1, σ̃

2
ε , ṽ0, ṽ1, p̃00, p̃11, S̃, Y

)
= g

(
β̃

∣∣ σ̃ 2
ε , ṽ0, ṽ1, S̃, Y

)
, (C.3)

g
(
σ 2

v,0, σ
2
v,1

∣∣ β̃, σ̃ 2
ε , ṽ0, ṽ1, p̃00, p̃11, S̃, Y

)
= g

(
σ 2

v,0, σ
2
v,1

∣∣ ṽ0, ṽ1
)
, (C.4)

g
(
σ̃ 2

ε

∣∣ β̃, σ 2
v,0, σ

2
v,1, ṽ0, ṽ1, p̃00, p̃11, S̃, Y

)
= g

(
σ̃ 2

ε

∣∣ β̃, ṽ0, ṽ1, S̃, Y
)
, (C.5)

g
(
ṽ0, ṽ1

∣∣ β̃, σ 2
v,0, σ

2
v,1, σ̃

2
ε , p̃00, p̃11, S̃, Y

)
= g

(
ṽ0, ṽ1

∣∣ β̃, σ 2
v,0, σ

2
v,1, σ̃

2
ε , S̃, Y

)
, (C.6)

g
(

p̃00, p̃11
∣∣ β̃, σ 2

v,0, σ
2
v,1, σ̃

2
ε , ṽ0, ṽ1, S̃, Y

)
= g

(
p̃00, p̃11

∣∣ S̃
)
, (C.7)

Pr
(

S̃
∣∣ β̃, σ 2

v,0, σ
2
v,1, σ̃

2
ε , ṽ0, ṽ1, p̃00, p̃11, Y

)
= Pr

(
S̃

∣∣ β̃, σ̃ 2
ε , ṽ0, ṽ1, p̃00, p̃11, Y

)
. (C.8)

In each density in (C.3)–(C.8), the second expression eliminates
unnecessary conditioning information. Given Y and arbitrary ini-
tial values for the other conditioning information in (C.3), the
Gibbs Sampler obtains draws of all objects of interest by sam-
pling recursively through the set of conditional posterior densi-
ties in (C.3)–(C.8). Under mild regularity conditions (Tierney, 1994)
random samples obtained in this manner will converge to draws
taken from the joint posterior density of interest. In simulating the
posterior density, we discard the first 2000 draws to ensure con-
vergence. Sample statistics regarding the sampled posterior density
are then based on an additional 10,000 draws.

25 The inverted-gamma density is improper in the context of O’Hagan (1994,
p. 245), in that it specifies a density with infinite moments. However, this prior
yields a proper posterior density (Albert and Chib, 1993; and O’Hagan, 1994, p. 292).

http://www.unionstats.com
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By combining results from the existing literature, it is straight-
forward to obtain random samples from each of the densities in
(C.3)–(C.8). To begin, note that, conditional on S̃ , the model in (C.1)
is simply a random-effects model (with dummy variables), and the
conditional posterior densities in (C.3)–(C.6) define a Gibbs Sam-
pler for this model. For the choice of priors given above, analytic
characterizations of these conditional densities are readily available
(e.g., Koop, 2003, pp. 153–154).

To complete the Gibbs Sampler, we require random samples of
p̃11, p̃00, and S̃ from (C.7)–(C.8). Given the assumptions of inde-
pendence of both εn,t and Sn,t across cities, these densities reduce
as follows:

g
(

p̃00, p̃11
∣∣ S̃

) =
N∏

n=1

g
(

p00,n, p11,n
∣∣ S̃n

)
, (C.9)

Pr
(

S̃
∣∣ β̃, σ̃ 2

ε , ṽ0, ṽ1, p̃00, p̃11, Y
)

=
N∏

n=1

Pr
(

S̃n
∣∣ β̃, σ 2

ε,n, v0,n, v1,n p00,n, p11,n, yn,1, . . . , yn,T
)
. (C.10)

The elements in the products on the right-hand side of (C.9)
and (C.10) are posterior densities for p00,n, p11,n , and S̃n from the
Markov-switching in the mean model in Eq. (1), and can be eval-
uated using only employment data for city n. A draw of p̃11, p̃00,
and S̃ from (C.7)–(C.8) is then obtained by drawing p00,n, p11,n ,
and S̃n,n = 1, . . . , N , using each city’s employment data in isola-
tion. For the functional forms of the priors given above, an algo-
rithm for obtaining draws of p00,n, p11,n and S̃n was first given in
Albert and Chib (1993). For draws of S̃n , we use an alternative,
efficient algorithm developed by Kim and Nelson (1998) that is
based on the notion of “multi-move” Gibbs Sampling introduced in
Carter and Kohn (1994). Analytic characterizations for (C.9)–(C.10)
are given in Kim and Nelson (1999b, pp. 212–215).

We are also interested in conducting model comparisons using
the posterior odds ratio in (4). Using Bayes Rule, the posterior odds
ratio can be written as:

P U R = Pr(MU |Y )

Pr(MR |Y )
= Pr(MU )

Pr(MR)

f (Y |MU )

f (Y |MR)
. (C.11)

The first term on the right-hand side of (C.9) is the prior odds ra-
tio. We give equal prior probability to each model considered, so
that the prior odds ratio is unity for all model comparisons con-
ducted. The second term is the ratio of marginal likelihoods for the
unrestricted and restricted models, and is typically referred to as
the Bayes Factor. To calculate the Bayes Factor we use an approach
based on the Savage–Dickey Density Ratio, which is appropriate
for nested model comparisons. The Savage–Dickey Density Ratio is
straightforward to implement, and is described in detail in Koop
(2003, pp. 69–71).
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