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Glossary 
 
Filtered Probability of a Regime 
 
The probability that the unobserved Markov chain for a Markov-switching model is in a 
particular regime in period t, conditional on observing sample information up to period t. 
 
Gibbs Sampler 
 
An algorithm to generate a sequence of samples from the joint probability distribution of 
a group of random variables by repeatedly sampling from the full set of conditional 
distributions for the random variables.  
 
Markov Chain 
 
A process that consists of a finite number of states, or regimes, where the probability of 
moving to a future state conditional on the present state is independent of past states.  
 
Markov-Switching Model 
 
A regime-switching model in which the shifts between regimes evolve according to an 
unobserved Markov chain. 
 
Regime-Switching Model 
 
A parametric model of a time series in which parameters are allowed to take on different 
values in each of some fixed number of regimes. 
 
Smooth Transition Threshold Model 
 
A threshold model in which the effect of a regime shift on model parameters is phased in 
gradually, rather than occurring abruptly.    
 
Smoothed Probability of a Regime  
 
The probability that the unobserved Markov chain for a Markov-switching model is in a 
particular regime in period t, conditional on observing all sample information. 
 
Threshold Model 
 
A regime-switching model in which the shifts between regimes are triggered by the level 
of an observed economic variable in relation to an unobserved threshold.  
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Time-Varying Transition Probability 
 
A transition probability for a Markov chain that is allowed to vary depending on the 
outcome of observed information.  
 
Transition Probability 
 
The probability that a Markov chain will move from state j to state i.  
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I.  Definition of the Subject and Its Importance 
 

Regime-switching models are time-series models in which parameters are allowed 

to take on different values in each of some fixed number of “regimes.”  A stochastic 

process assumed to have generated the regime shifts is included as part of the model, 

which allows for model-based forecasts that incorporate the possibility of future regime 

shifts.  In certain special situations the regime in operation at any point in time is directly 

observable.  More generally the regime is unobserved, and the researcher must conduct 

inference about which regime the process was in at past points in time.  The primary use 

of these models in the applied econometrics literature has been to describe changes in the 

dynamic behavior of macroeconomic and financial time series. 

Regime-switching models can be usefully divided into two categories, “threshold” 

models and “Markov-switching” models.  The primary difference between these 

approaches is in how the evolution of the state process is modeled.  Threshold models, 

introduced by Tong (1983), assume that regime shifts are triggered by the level of 

observed variables in relation to an unobserved threshold.  Markov-switching models, 

introduced to econometrics by Goldfeld and Quandt (1973), Cosslett and Lee (1985), and 

Hamilton (1989), assume that the regime shifts evolve according to a Markov chain. 

Regime-switching models have become an enormously popular modeling tool for 

applied work.  Of particular note are regime-switching models of measures of economic 

output, such as real Gross Domestic Product (GDP), which have been used to model and 

identify the phases of the business cycle.  Examples of such models include 

Hamilton (1989), Beaudry and Koop (1993), Tiao and Tsay (1994), Potter (1995), 

Pesaran and Potter (1997), Chauvet (1998), Van Dijk and Franses (1999), Kim and 
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Nelson (1999b, 1999c), Öcal and Osborne (2000), and Kim, Morley and Piger (2005).  A 

sampling of other applications include modeling regime shifts in time-series of inflation 

and interest rates (Evans and Wachtel, 1993; Garcia and Perron, 1996; Ang and 

Bekaert, 2002), high and low volatility regimes in equity returns (Turner, Startz and 

Nelson, 1989; Hamilton and Susmel, 1994; Hamilton and Lin, 1996; Dueker, 1997), 

shifts in the Federal Reserve’s policy “rule” (Kim, 2004; Sims and Zha, 2006), and time 

variation in the response of economic output to monetary policy actions (Garcia and 

Schaller, 2002; Kaufmann, 2002; Ravn and Sola, 2004; Lo and Piger, 2005).  

 

II.  Introduction 

 There is substantial interest in modeling the dynamic behavior of macroeconomic 

and financial quantities observed over time.  A challenge for this analysis is that these 

time series likely undergo changes in their behavior over reasonably long sample periods.  

This change may occur in the form of a “structural break”, in which there is a shift in the 

behavior of the time series due to some permanent change in the economy’s structure.  

Alternatively, the change in behavior might be temporary, as in the case of wars or 

“pathological” macroeconomic episodes such as economic depressions, hyperinflations, 

or financial crises.  Finally, such shifts might be both temporary and recurrent, in that the 

behavior of the time series might cycle between regimes.  For example, early students of 

the business cycle argued that the behavior of economic variables changed dramatically 

in business cycle expansions vs. recessions. 

 The potential for shifts in the behavior of economic time series means that 

constant parameter time series models might be inadequate for describing their evolution.  
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As a result, recent decades have seen extensive interest in econometric models designed 

to incorporate parameter variation.  One approach to describing this variation, denoted a 

“regime-switching” model in the following, is to allow the parameters of the model to 

take on different values in each of some fixed number of regimes, where, in general, the 

regime in operation at any point in time is unobserved by the econometrician.  However, 

the process that determines the arrival of new regimes is assumed known, and is 

incorporated into the stochastic structure of the model.  This allows the econometrician to 

draw inference about the regime that is in operation at any point in time, as well as form 

forecasts of which regimes are most likely in the future.  

Application of regime-switching models are usually motivated by economic 

phenomena that appear to involve cycling between recurrent regimes.  For example, 

regime-switching models have been used to investigate the cycling of the economy 

between business cycle phases (expansion and recession), “bull” and “bear” markets in 

equity returns, and high and low volatility regimes in asset prices.  However, regime 

switching models need not be restricted to parameter movement across recurrent regimes.  

In particular, the regimes might be non-recurrent, in which case the models can capture 

permanent “structural breaks” in model parameters. 

 There are a number of formulations of regime-switching time-series models in the 

recent literature, which can be usefully divided into two broad approaches.  The first 

models regime change as arising from the observed behavior of the level of an economic 

variable in relation to some threshold value.  These “threshold” models were first 

introduced by Tong (1983), and are surveyed by Potter (1999).  The second models 

regime change as arising from the outcome of an unobserved, discrete, random variable, 



7 

which is assumed to follow a Markov process.  These models, commonly referred to as 

“Markov-switching” models, were introduced in econometrics by Goldfeld and 

Quandt (1973) and Cosslett and Lee (1985), and became popular for applied work 

following the seminal contribution of Hamilton (1989).  Hamilton and Raj (2002) and 

Hamilton (2005a) provide surveys of Markov-switching models, while Hamilton (1994) 

and Kim and Nelson (1999a) provide textbook treatments. 

 There are by now a number of empirical applications of regime-switching models 

that establish their empirical relevance over constant parameter alternatives.  In 

particular, a large literature has evaluated the statistical significance of regime-switching 

autoregressive models of measures of U.S. economic activity.  While the early literature 

did not find strong evidence for simple regime-switching models over the alternative of a 

constant parameter autoregression for U.S. real GDP (e.g. Garcia, 1998), later researchers 

have found stronger evidence using more complicated models of real GDP (Kim, Morley 

and Piger, 2005), alternative measures of economic activity (Hamilton, 2005b), and 

multivariate techniques (Kim and Nelson, 2001).  Examples of other studies finding 

statistical evidence in favor of regime-switching models include Garcia and 

Perron (1996), who document regime switching in the conditional mean of an 

autoregression for the U.S. real interest rate, and Guidolin and Timmermann (2005), who 

find evidence of regime-switching in the conditional mean and volatility of U.K. equity 

returns. 

 This article surveys the literature surrounding regime-switching models, focusing 

primarily on Markov-switching models.  The organization of the article is as follows.  

Section III describes both threshold and Markov-switching models using a simple 
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example.  The article then focuses on Markov-switching models, with Section IV 

discussing estimation techniques for a basic model, Section V surveying a number of 

primary extensions of the basic model, and Section VI surveying issues related to 

specification analysis.  Section VII gives an empirical example, discussing how Markov-

switching models can be used to identify turning points in the U.S. business cycle.  The 

article concludes by highlighting some particular avenues for future research.   

 

III.  Threshold and Markov-Switching Models of Regime Change 
 

 This section describes the threshold and Markov-switching approaches to 

modeling regime-switching using a specific example.  In particular, suppose we are 

interested in modeling the sample path of a time series, T
tty 1}{  , where ty  is a scalar, 

stationary, random variable.  A popular choice is an autoregressive (AR) model of order 

k: 

 

 ¦
 

� �� 
k

j
tjtjt yy

1
HID , (1) 

 
where the disturbance term, tH , is assumed to be normally distributed, so that 

� �2,0~ VH Nt .  The AR(k) model in (1) is a parsimonious description of the data, and has 

a long history as a tool for establishing stylized facts about the dynamic behavior of the 

time series, as well as an impressive record in forecasting.   

 In many cases however, we might be interested in whether the behavior of the 

time series changes across different periods of time, or regimes.  In particular, we may be 

interested in the following regime-switching version of (1): 
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where � �2,0~

tSt N VH .  In (2), the parameters of the AR(k) depend on the value of a 

discrete-valued state variable, iS t , i = 1,….,N, which denotes the regime in operation 

at time t.  Put simply, the parameters of the AR(k) model are allowed to vary among one 

of N different values over the sample period. 

There are several items worth emphasizing about the model in (2).  First, 

conditional on being inside of any particular regime, eq. (2) is simply a constant 

parameter linear regression.  Such models, which are commonly referred to as “piecewise 

linear”, make up the vast majority of the applications of regime-switching models.  

Second, if the state variable were observed, the model in (2) is simply a linear regression 

model with dummy variables, a fact that will prove important in our discussion of how 

the parameters of (2) might be estimated.  Third, although the specification in (2) allows 

for all parameters to switch across all regimes, more restrictive models are certainly 

possible, and indeed are common in applied work.  For example, a popular model for 

time series of asset prices is one in which only the variance of the disturbance term is 

allowed to vary across regimes.  Finally, the shifts in the parameters of (2) are modeled as 

occurring abruptly.  An example of an alternative approach, in which parameter shifts are 

phased in gradually, can be found in the literature investigating “smooth transition” 

threshold models.  Such models will not be described further here, but are discussed in 

detail in Granger and Teräsvirta (1993).  
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Threshold and Markov-switching models differ in the assumptions made about 

the state variable, tS .  Threshold models assume that tS  is a deterministic function of an 

observed variable.  In most applications this variable is taken to be a particular lagged 

value of the process itself, in which case regime shifts are said to be “self-exciting”.  In 

particular, define N-1 “thresholds” as 121 .... ���� NWWW .  Then, for a self-exciting 

threshold model, tS  is defined as follows: 
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In (3), d is known as the “delay” parameter.  In most cases tS  is unobserved by the 

econometrician, because the delay and thresholds, d and iW , are generally not observable.  

However, d and iW  can be estimated along with other model parameters.  Potter (1999) 

surveys classical and Bayesian approaches to estimation of the parameters of threshold 

models. 

Markov-switching models also assume that tS  is unobserved.  In contrast to 

threshold models however, tS  is assumed to follow a particular stochastic process, 

namely an N-state Markov chain.  The evolution of Markov chains are described by their 

transition probabilities, given by: 

 
 � � � � ijttttt pjSiSPqSjSiSP        ��� 121 |,...,| , (4) 
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where, conditional on a value of j, we assume ¦
 

 
N

i
ijp

1
1.  That is, the process in (4) 

specifies a complete probability distribution for tS .  In the general case, the Markov 

process allows regimes to be visited in any order and for regimes to be visited more than 

once.  However, restrictions can be placed on the ijp  to restrict the order of regime shifts.  

For example, Chib (1998) notes that the transition probabilities can be restricted in such a 

way so that the model in (2) becomes a “changepoint” model in which there are N-1 

structural breaks in the model parameters.  Finally, the vast majority of the applied 

literature has assumed that the transition probabilities in (4) evolve independently of 

lagged values of the series itself, so that  

 
 � � � � ijttttttt pjSiSPyyqSjSiSP        ����� 12121 |,...,,...,,| , (5) 

 
which is the polar opposite of the threshold process described in (3).  For this reason, 

Markov-switching models are often described as having regimes that evolve 

“exogenously” of the series, while threshold models are said to have “endogenous” 

regimes.  However, while popular in practice, the restriction in (5) is not necessary for 

estimation of the parameters of the Markov-switching model.  Section V of this article 

discusses models in which the transition probabilities of the Markov process are allowed 

to be partially determined by lagged values of the series.  

 The threshold and Markov-switching approaches are best viewed as 

complementary, with the “best” model likely to be application specific.  Certain 

applications appear tailor-made for the threshold assumption.  For example, we might 

have good reason to think that the behavior of time series such as an exchange rate or 
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inflation will exhibit regime shifts when the series moves outside of certain thresholds, as 

this will trigger government intervention.  The Markov-switching model might instead be 

the obvious choice when one does not wish to tie the regime shifts to the behavior of a 

particular observed variable, but instead wishes to let the data speak freely as to when 

regime shifts have occurred. 

In the remainder of this article I will survey various aspects regarding the 

econometrics of Markov-switching models.  For readers interested in learning more about 

threshold models, the survey article of Potter (1999) is an excellent starting point.  

 

IV. Estimation of a Basic Markov-Switching Model 

 This section discusses estimation of the parameters of Markov-switching models.  

The existing literature has focused almost exclusively on likelihood based methods for 

estimation.  I retain this focus here, and discuss both maximum likelihood and Bayesian 

approaches to estimation.  An alternative approach based on semi-parametric estimation 

is discussed in Campbell (2002). 

To aid understanding, we focus on a specific, baseline, case, which is the Markov-

switching autoregression given in (2) and (5).  We simplify further by allowing for N = 2 

regimes, so that 1 tS  or 2.  It is worth noting that in many cases two regimes is a 

reasonable assumption.  For example, in the literature using Markov-switching models to 

study business cycles phases, a two regime model, meant to capture an expansion and 

recession phase, is an obvious starting point that has been used extensively. 

 Estimation of Markov-switching models necessitates two additional restrictions 

over constant parameter models.  First of all, the labeling of tS  is arbitrary, in that 
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switching the vector of parameters associated with 1 tS  and 2 tS  will yield an 

identical model.  A commonly used approach to normalize the model is to restrict the 

value of one of the parameters when 1 tS  relative to its value when 2 tS .  For 

example, for the model in (2) we could restrict 12 DD � .  For further details on the choice 

of normalization, see Hamilton, Wagoner and Zha (2004).  Second, the transition 

probabilities in (5) must be constrained to lie in [0,1].  One approach to implement this 

constraint, which will be useful in later discussion, is to use a probit specification for tS .  

In particular, the value of tS  is assumed to be determined by the realization of a random 

variable, tK , as follows: 
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where � �1,0...~ NdiitK .  The specification in (6) depends on two parameters, 1J  and 2J , 

which determine the transition probabilities of the Markov process as follows: 
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where j = 1, 2 and )  is the standard normal cumulative distribution function. 

There are two main items of interest on which to conduct statistical inference for 

Markov-switching models.  The first is the parameters of the model, of which there are 

� �32 �k  for the two-regime Markov-switching autoregression.  In the following we 

collect these parameters in the vector  
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 � �'212,2,22,1211,1,21,11 ,,,...,,,,,,...,,, JJIIIDVIIIDT kk . (8) 

 
The second item of interest is the regime indicator variable, tS .  In particular, as tS  is 

unobserved, we will be interested in constructing estimates of which regime was in 

operation at each point in time.  These estimates will take the form of posterior 

probabilities that iSt  , i =1, 2.  We assume that the econometrician has a sample of T + 

k observations, � �)1(21 ,......,,, ���� kTTT yyyy .  The series of observations available up to 

time t is denoted as � �)1(21 ,......,,, ���� : ktttt yyyy . 

 We begin with maximum likelihood estimation of T .  Maximum likelihood 

estimation techniques for various versions of Markov-switching regressions can be found 

in the existing literature of multiple disciplines, for example Poritz (1982), Juang and 

Rabiner (1985), and Rabiner (1989) in the speech recognition literature, and Cosslett and 

Lee (1985) and Hamilton (1989) in the econometrics literature.  Here we focus on the 

presentation of the problem given in Hamilton (1989), who presents a simple iterative 

algorithm that can be used to construct the likelihood function of a Markov-switching 

autoregression, as well as compute posterior probabilities for tS . 

For a given value of T , the conditional log likelihood function is given by: 

 

 � � � �¦
 

�: 
T

t
ttyfL

1
1;|log TT . (9) 

 
Construction of the conditional log likelihood function then requires construction of the 

conditional density function, � �T;| 1�: ttyf , for t = 1,…,T.  The “Hamilton Filter” 

computes these conditional densities recursively as follows:  Suppose for the moment that 
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we are given � �T;| 11 �� : tt jSP , which is the posterior probability that jSt  �1  based 

on information observed through period t-1.  Equations (10) and (11) can then be used to 

construct � �T;| 1�: ttyf : 
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From eq. (5), the first term in the summation in (10) is simply the transition probability, 

ijp , which is known for any particular value of T .  The first term in (11) is the 

conditional density of ty  assuming that iSt  , which, given the within-regime normality 

assumption for tH , is: 
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With � �T;| 1�: ttyf  in hand, the next step is then to update (10) and (11) to compute 

� �T;|1 ttyf :� .  To do so requires � �T;| tt iSP :  as an input, meaning we must update 

� �T;| 1�: tt iSP  to reflect the information contained in ty .  This updating is done using 

Bayes’ rule: 
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where each of the three elements on the right-hand side of (13) are computable from the 

elements of (10) and (11).  Given a value for � �T;| 00 : iSP  to initialize the filter, 

equations (10)-(13) can then be iterated to construct � �T;| 1�: ttyf , t = 1,…,T, and 

therefore the log likelihood function, � �TL .  The maximum likelihood estimates, MLET̂ , 

are then the value of T  that maximizes � �TL , and can be obtained using standard 

numerical optimization techniques. 

 How do we set � �T;| 00 : iSP  to initialize the filter?  As is discussed in 

Hamilton (1989), exact evaluation of this probability is rather involved.  The usual 

practice, which is possible when tS  is an ergodic Markov chain, is to simply set 

� �T;| 00 : iSP  equal to the unconditional probability, � �iSP  0 .  For the two regime 

case considered here these unconditional probabilities are given by: 

 

 � �
2211

22
0 2

11
pp

pSP
��

�
   (14) 

 � � � �112 00  �  SPSP . 

 
Alternatively, � �T;| 00 : iSP  could be treated as an additional parameter to be 

estimated.  See Hamilton (1994) and Kim and Nelson (1999a) for further details.   

 An appealing feature of the Hamilton filter is that, in addition to the likelihood 

function, the procedure also directly evaluates � �T;| tt iSP : , which is commonly 

referred to as a “filtered” probability.  Inference regarding the value of tS  is then 

sometimes based on � �MLEtt iSP T̂;| : , which is obtained by running the Hamilton filter 
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with MLETT ˆ .  In many circumstances, we might also be interested in the so-called 

“smoothed” probability of a regime computed using all available data, or 

� �T;| Tt iSP : .  Kim (1994) presents an efficient recursive algorithm that can be 

applied to compute these smoothed probabilities.  

 We now turn to Bayesian estimation of Markov-switching models.  In the 

Bayesian approach, the parameters T  are themselves assumed to be random variables, 

and the goal is to construct the posterior density for these parameters given the observed 

data, denoted � �tf :|T .  In all but the simplest of models, this posterior density does not 

take the form of any well known density whose properties can be analyzed analytically.  

In this case, modern Bayesian inference usually proceeds by sampling the posterior 

density repeatedly to form estimates of posterior moments and other objects of interest. 

These estimates can be made arbitrarily accurate by increasing the number of samples 

taken from the posterior.  In the case of Markov-switching models, Albert and 

Chib (1993) demonstrate that samples from � �tf :|T  can be obtained using a 

simulation-based approach known as the Gibbs Sampler.  The Gibbs Sampler, introduced 

by Geman and Geman (1984), Tanner and Wong (1987) and Gelfand and Smith (1990), 

is an algorithm that produces random samples from the joint density of a group of 

random variables by repeatedly sampling from the full set of conditional densities for the 

random variables.  

 We will sketch out the main ideas of the Gibbs Sampler in the context of the two-

regime Markov-switching autoregression.  It will prove useful to divide the parameter 

space into � �'
21 ,TTT  , where � �'2,2,22,1211,1,21,111 ,...,,,,,,...,,, kk IIIDVIIIDT   and 
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� �212 ,JJT  .  Suppose it is feasible to simulate draws from the three conditional 

distributions, � �TSf :,~,| 21 TT , � �TSf :,~,| 12 TT , and � �TSP :,,|~
21 TT , where 

� �'
21 ,...,,~

TSSSS  .  Then, conditional on arbitrary initial values, )0(
2T  and )0(~S , we can 

obtain a draw of 1T , denoted )1(
1T , from � �TSf :,~,| )0()0(

21 TT , a draw of 2T , denoted )1(
2T , 

from � �TSf :,~,| )0()1(
12 TT , and a draw of S~ , denoted )1(~S , from � �TSP :,,|~ )1(

2
)1(

1 TT .  

This procedure can be iterated to obtain )(
1

jT , )(
2

jT , and )(~ jS , for j = 1, …, J.  For large 

enough J, and assuming weak regularity conditions, these draws will converge to draws 

from � �Tf :|T  and � �TSP :|~ .  Then, by taking a large number of such draws beyond J, 

one can estimate any feature of � �Tf :|T  and � �TSP :|~ , such as moments of interest, 

with an arbitrary degree of accuracy.  For example, an estimate of � �Tt iSP : |  can be 

obtained by computing the proportion of draws of S~  for which iSt  .  

Why is the Gibbs Sampler useful for a Markov-switching model?  It turns out that 

although � �tf :|T  and � �TSP :|~  cannot be sampled directly, it is straightforward, 

assuming natural conjugate prior distributions, to obtain samples from � �TSf :,~,| 21 TT , 

� �TSf :,~,| 12 TT , and � �TSP :,,|~
21 TT  .  This is most easily seen for the case of 1T , 

which, when S~  is conditioning information, represents the parameters of a linear 

regression with dummy variables, a case for which techniques to sample the parameter 

posterior distribution are well established (Zellner, 1971).  An algorithm for obtaining 

draws of S~  from � �TSP :,,|~
21 TT  was first given in Albert and Chib (1993), while Kim 

and Nelson (1998) develop an alternative, efficient, algorithm based on the notion of 

“multi-move” Gibbs Sampling introduced in Carter and Kohn (1994).  For further details 
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regarding the implementation of the Gibbs Sampler in the context of Markov-switching 

models, see Kim and Nelson (1999a). 

 The Bayesian approach has a number of features that make it particularly 

attractive for estimation of Markov-switching models.  First of all, the requirement of 

prior density functions for model parameters, considered by many to be a weakness of the 

Bayesian approach in general, is often an advantage for Bayesian analysis of Markov-

switching models (Hamilton, 1991).  For example, priors can be used to push the model 

toward capturing one type of regime-switching vs. another.  The value of this can be seen 

for Markov-switching models of the business cycle, for which the econometrician might 

wish to focus on portions of the likelihood surface related to business cycle switching, 

rather than those related to longer term regime shifts in productivity growth.  Another 

advantage of the Bayesian approach is with regards to the inference drawn on tS .  In the 

maximum likelihood approach, the methods of Kim (1994) can be applied to obtain 

� �MLETt iSP T̂;| : .  As these probabilities are conditioned on the maximum likelihood 

parameter estimates, uncertainty regarding the unknown values of the parameters has not 

been taken into account.  By contrast, the Bayesian approach yields � �Tt iSP : | , 

which is not conditional on a particular value of T  and thus incorporates uncertainty 

regarding the value of T  that generated the observed data.  

 

V. Extensions of the Basic Markov-Switching Model 

 The basic, two-regime Markov-switching autoregression in (2) and (5) has been 

used extensively in the literature, and remains a popular specification in applied work.  
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However, it has been extended in a number of directions in the substantial literature that 

follows Hamilton (1989).  This section surveys a number of these extensions.  

 The estimation techniques discussed in section IV can be adapted in a 

straightforward manner to include several extensions to the basic Markov-switching 

model.  For example, the filter in (10)-(13) can be modified in obvious ways to 

incorporate the case of N > 2 regimes, as well as to allow ty  to be a vector of random 

variables, so that the model in (2) becomes a Markov-switching vector autoregression 

(MS-VAR).  Hamilton (1994) discusses both of these cases, while Krolzig (1997) 

provides extensive discussion of MS-VARs.  Sims and Zha (2006) is a recent example of 

applied work using a MS-VAR with a large number of regimes.  In addition, the (known) 

within-regime distribution of the disturbance term, tH , could be non-Gaussian, as in 

Dueker (1997) or Hamilton (2005b).  Further, the parameters of (2) could be extended to 

depend not just on tS , but also on a finite number of lagged values of tS , or even a 

second state variable possibly correlated with tS .  Indeed, such processes can generally 

be rewritten in terms of the current value of a single, suitably redefined, state variable.  

Kim and Murray (2002) and Kim, Piger and Startz (2007) provide examples of such a 

redefinition.  For further discussion of all of these cases, see Hamilton (1994). 

 The specification for the transition probabilities in (5) restricted the probability 

that iSt   to depend only on the value of 1�tS .  However, in some applications we might 

think that these transition probabilities are driven in part by observed variables, such as 

the past evolution of the process.  To this end, Diebold, Lee and Weinbach (1994) and 

Filardo (1994) develop Markov-switching models with time-varying transition 

probabilities (TVTP), in which the transition probabilities are allowed to vary depending 
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on conditioning information.  Suppose that tz  represents a vector of observed variables 

that are thought to influence the realization of the regime.  The probit representation for 

the state process in (6) and (7) can then be extended as follows: 
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with associated transition probabilities: 
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where j = 1, 2 and )  is again the standard normal cumulative distribution function.  

Estimation of the Markov-switching autoregression with TVTP is then straightforward.  

In particular, assuming that tz  contains lagged values of ty  or exogenous random 

variables, maximum likelihood estimation proceeds by simply replacing ijp  with � �tij zp   

in the filter given in (10)-(13).  Bayesian estimation of TVTP models via the Gibbs 

Sampler is also straightforward, and is discussed in Filardo and Gordon (1998).  Despite 

its intuitive appeal, the literature contains relatively few applications of the TVTP model.  

A notable example of the TVTP framework is found in Durland and McCurdy (1994), 

Filardo and Gordon (1998) and Kim and Nelson (1998), who study business cycle 

“duration dependence,” or whether the probability of a business cycle phase shift depends 

on how long the economy has been in the current phase.  Other applications include Ang 

and Bekaert (2002), who model regime-switches in interest rates, and Lo and 
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Piger (2005), who investigate sources of time-variation in the response of output to 

monetary policy actions.  

 The TVTP model is capable of relaxing the restriction that the state variable, tS , 

is independent of lagged values of the series, ty , and thus of lagged values of the 

disturbance term, tH .  Kim, Piger and Startz (2003) consider a Markov-switching model 

in which tS  is also correlated with the contemporaneous value of tH , and is thus 

“endogenous”.  They model this endogenous switching by assuming that the shock to the 

probit process in (6), tK , and tH  are jointly normally distributed as follows: 
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Kim, Piger and Startz (2003) show that when 0zU , the conditional density in (12) is no 

longer Gaussian, but can be evaluated analytically.  Thus, the likelihood function for the 

endogenous switching model can be evaluated with simple modifications to the recursive 

filter in (10)-(13).  Tests of the null hypothesis that tS  is exogenous can also be 

implemented in a straightforward manner.  Chib and Dueker (2004) consider endogenous 

switching as in (17) from a Bayesian perspective.  

 The extensions listed above are primarily modifications to the stochastic process 

assumed to drive tS .  A more fundamental extension of (2) is to consider Markov-

switching in time series models more complicated than simple autoregressions.  An 

important example of this is a state-space model with Markov-switching parameters.  

Allowing for Markov-switching in the state-space representation for a time series is 
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particularly interesting because a large number of popular time-series models can be 

given a state-space representation.  Thus, incorporating Markov-switching into a general 

state-space representation immediately extends the Markov-switching framework to these 

models.   

To aid discussion, consider the following Markov-switching state-space 

representation for a vector of R random variables, � �'
21 ,...,, Rtttt yyyY  , given as follows: 
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where � �'

21 ,...,, Dtttt xxxX  , � �
tSt BNW ,0~  and � �

tSt QNV ,0~ .  The parameters of the 

model undergo Markov switching, and are contained in the matrices 

ttttt SSSSS QFABH ,,,, .  A case of primary interest is when some or all of the elements of 

tX  are unobserved.  This is the case for a wide range of important models in practice, 

including models with moving average (MA) dynamics, unobserved components (UC) 

models, and dynamic factor models.  However, in the presence of Markov-switching 

parameters, the fact that tX  is unobserved introduces substantial complications for 

construction of the likelihood function.  In particular, as is discussed in detail in 

Kim (1994) and Kim and Nelson (1999a), exact construction of the conditional density 

� �T;| 1�: ttyf  requires that one consider all possible permutations of the entire history of 

the state variable, tS , 1�tS , 2�tS ,…, 1S .  For even moderately sized values of t, this 

quickly becomes computationally infeasible. 
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 To make inference via maximum likelihood estimation feasible, Kim (1994) 

develops a recursive filter that constructs an approximation to the likelihood function.  

This filter “collapses” the number of lagged regimes that are necessary to keep track of 

by approximating a nonlinear expectation with a linear projection.  Kim and 

Nelson (1999a) provide a detailed description of the Kim (1994) filter, as well as a 

number of examples of its practical use.   

 If one is willing to take a Bayesian approach to the problem, Kim and 

Nelson (1998) show that inference can be conducted via the Gibbs Sampler without 

resorting to approximations.  As before, the conditioning features of the Gibbs sampler 

greatly simplifies the analysis.  For example, by conditioning on � �'
21 ,...,,~

TSSSS  , the 

model in (18) is simply a linear, Gaussian, state-space model with dummy variables, for 

which techniques to sample the posterior distribution of model parameters and the 

unobserved elements of tX are well established (Carter and Kohn, 1994).  Kim and 

Nelson (1999a) provide detailed descriptions of how the Gibbs Sampler can be 

implemented for a state-space model with Markov switching. 

 There are now many applications of state space models with Markov switching in 

the applied literature.  For example, a large literature uses UC models to decompose 

measures of economic output into trend and cyclical components, with the cyclical 

component often interpreted as a measure of the business cycle.  Until recently, this 

literature focused on linear representations for the trend and cyclical components 

(Harvey, 1985; Watson, 1986; Clark, 1987; Morley, Nelson and Zivot, 2003).  However, 

one might think that the processes used to describe the trend and cyclical components 

might display regime switching in a number of directions, such as that related to the 
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phase of the business cycle or to longer-run structural breaks in productivity growth or 

volatility.  A UC model with Markov switching in the trend and cyclical components can 

be cast as a Markov-switching state-space model as in (18).  Applications of such regime-

switching UC models can be found in Kim and Nelson (1999b), Kim and Murray (2002), 

Kim and Piger (2002), Mills and Wang (2002), and Sinclair (2007).  Another primary 

example of a Markov-switching state-space model is a dynamic factor model with 

Markov-switching parameters, examples of which are given in Chauvet (1998) and Kim 

and Nelson (1998).  Section VII presents a detailed empirical example of such a model. 

 

VI. Specification Testing for Markov-Switching Models 

 Our discussion so far has assumed that key choices in the specification of regime-

switching models are known to the researcher.  Chief among these is the choice of the 

number of regimes, N.  However, in practice there is likely uncertainty about the 

appropriate number of regimes.  This section discusses data-based techniques that can be 

used to select the value of N. 

 To fix ideas, consider a simple version of the Markov-switching model in (2):   

 
 tSt t

y HD � , (19) 

 
where � �2,0~ VH Nt .  Consider the problem of trying to decide between a model with N 

= 2 regimes vs. the simpler model with N = 1 regimes.  The model with one regime is a 

constant parameter model, and thus this problem can be interpreted as a decision between 

a model with regime-switching parameters vs. one without.  An obvious choice for 
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making this decision is to construct a test of the null hypothesis of N = 1 vs. the 

alternative of N = 2.  For example, one might construct the likelihood ratio statistic: 

 
 � � � �� �)1()2(

ˆˆ2 MLEMLE LLLR TT � , (20) 

 
where )1(

ˆ
MLET  and )2(

ˆ
MLET  are the maximum likelihood estimates under the assumptions 

of N = 1 and N = 2 respectively.  Under the null hypothesis there are three fewer 

parameters to estimate, 2D , 1J  and 2J , than under the alternative hypothesis.  Then, to 

test the null hypothesis, one might be tempted to proceed by constructing a p-value for 

LR using the standard � �32F  distribution. 

 However, this final step is not justified, and can lead to very misleading results in 

practice.  In particular, the standard conditions for LR to have an asymptotic 2F  

distribution include that all parameters are identified under the null hypothesis 

(Davies, 1977).  In the case of the model in (19), the parameters 1J  and 2J , which 

determine the transition probabilities ijp , are not identified assuming the null hypothesis 

is true.  In particular, if 21 DD  , then ijp  can take on any values without altering the 

likelihood function for the observed data.  A similar problem exists when testing the 

general case of N vs. N+1 regimes.  

Fortunately, a number of contributions in recent years have produced 

asymptotically justified tests of the null hypothesis of N regimes vs. the alternative of 

N+1 regimes.  In particular, Hansen (1992) and Garcia (1998) provide techniques to 

compute asymptotically valid critical values for LR.  Recently Carrasco, Hu and 

Ploberger (2004) have developed an asymptotically optimal test for the null hypothesis of 
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parameter constancy against the general alternative of Markov-switching parameters.  

Their test is particularly appealing because it does not require estimation of the model 

under the alternative hypothesis, as is the case with LR. 

If one is willing to take a Bayesian approach, comparison of models with N vs. 

N+1 regimes creates no special considerations.  In particular, one can proceed by 

computing standard Bayesian model comparison metrics, such as Bayes Factors or 

posterior odds ratios.  Examples of such comparisons can be found in Chib (1995), Koop 

and Potter (1999), and Kim and Nelson (2001). 

 

VII. Empirical Example:  Identifying Business Cycle Turning Points 

 This section presents an empirical example demonstrating how the Markov-

switching framework can be used to model shifts between expansion and recession 

phases in the U.S. business cycle.  This example is of particular interest for two reasons.  

First, although Markov-switching models have been used to study a wide variety of 

topics, their most common application has been as formal statistical models of business 

cycle phase shifts.  Second, the particular model we focus on here, a dynamic factor 

model with Markov-switching parameters, is of interest in its own right, with a number of 

potential applications.   

The first presentation of a Markov-switching model of the business cycle is found 

in Hamilton (1989).  In particular, Hamilton (1989) showed that U.S. real GDP growth 

could be characterized as an autoregressive model with a mean that switched between 

low and high growth regimes, where the estimated timing of the low growth regime 

corresponded closely to the dates of U.S. recessions as established by the Business Cycle 
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Dating Committee of the National Bureau of Economic Research (NBER).  This 

suggested that Markov-switching models could be used as tools to identify the timing of 

shifts between business cycle phases, and a great amount of subsequent analysis has been 

devoted toward refining and using the Markov-switching model for this task.   

The model used in Hamilton (1989) was univariate, considering only real GDP.  

However, as is discussed in Diebold and Rudebusch (1996), a long emphasized feature of 

the business cycle is comovement, or the tendency for business cycle fluctuations to be 

observed simultaneously in a large number of economic sectors and indicators.  This 

suggests that, by using information from many economic indicators, the identification of 

business cycle phase shifts might be sharpened.  One appealing way of capturing 

comovement in a number of economic indicators is through the use of dynamic factor 

models, as popularized by Stock and Watson (1989, 1991).  However, these models 

assumed constant parameters, and thus do not model business cycle phase shifts 

explicitly.  

To simultaneously capture comovement and business cycle phase shifts, 

Chauvet (1998) introduces Markov-switching parameters into the dynamic factor model 

of Stock and Watson (1989, 1991).  Specifically, defining rrtrt yyy � *  as the demeaned 

growth rate of the r’th economic indicator, the dynamic factor Markov-switching 

(DFMS) model has the form: 

 
 rttrrt ecy     * � E . (21) 

 
In (21), the demeaned first difference of each series is made up of a component common 

to each series, given by the dynamic factor tc , and a component idiosyncratic to each 
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series, given by rte .  The common component is assumed to follow a stationary 

autoregressive process: 

 
 tSt t

cL HPI  � ))(( . (22) 

 
where � �1,0...~ NdiitH .  The unit variance for tH  is imposed to identify the parameters of 

the model, as the factor loading coefficients, rE , and the variance of tH  are not separately 

identified.  The lag polynomial )(LI  is assumed to have all roots outside of the unit 

circle.  Regime switching is introduced by allowing the common component to have a 

Markov-switching mean, given by 
tSP , where ^ `2,1 tS .  The regime is normalized by 

setting 12 PP � .  Finally, each idiosyncratic component is assumed to follow a stationary 

autoregressive process: 

 
 rtrtr eL ZT  )( . (23) 

 
where )(LrT  is a lag polynomial with all roots outside the unit circle and 

� �2
,,0~ rrt N ZVZ . 

Chauvet (1998) estimates the DFMS model for U.S. monthly data on non-farm 

payroll employment, industrial production, real manufacturing and trade sales, and real 

personal income excluding transfer payments, which are the four monthly variables 

highlighted by the NBER in their analysis of business cycles.  The DFMS model can be 

cast as a state-space model with Markov switching of the type discussed in Section V.  

Chauvet estimates the parameters of the model via maximum likelihood, using the 
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approximation to the likelihood function given in Kim (1994).  Kim and Nelson (1998) 

instead use Bayesian estimation via the Gibbs Sampler to estimate the DFMS model.   

Here I update the estimation of the DFMS model presented in Kim and 

Nelson (1998) to a sample period extending from February 1967 through February 2007.  

For estimation, I use the Bayesian Gibbs Sampling approach, with prior distributions and 

specification details identical to those given in Kim and Nelson (1998).  The figure below 

displays )|2( TtSP <  obtained from the Gibbs Sampler, which is the estimated 

probability that the low growth regime is active.  For comparison, the figure also 

indicates NBER recession dates with shading. 

There are two items of particular interest in the figure.  First of all, the estimated 

probability of the low growth regime is very clearly defined, with )|2( TtSP <  

generally close to either zero or one.  Indeed, of the 481 months in the sample, only 32 

had )|2( TtSP <  fall between 0.2 and 0.8.  Second, )|2( TtSP <  is very closely 

aligned with NBER expansion and recession dates.  In particular, )|2( TtSP <  tends to 

be very low during NBER expansion phases and very high during NBER recession 

phases.   

The figure demonstrates the value added of employing the DFMS model, which 

considers the comovement between multiple economic indicators, over models 

considering only a single measure of economic activity.  In particular, results for the 

Markov-switching autoregressive model of real GDP presented in Hamilton (1989) were 

based on a data sample ending in 1984, and it is well documented that Hamilton’s 

original model does not perform well for capturing the two NBER recessions since 1984.  

Subsequent research has found that allowing for structural change in the residual variance 
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parameter (Kim and Nelson, 1999c; McConnell and Perez-Quiros, 2000) or omitting all 

linear dynamics in the model (Albert and Chib, 1993; Chauvet and Piger, 2003) improves 

the Hamilton model’s performance.  By contrast, the results presented here suggest that 

the DFMS model accurately identifies the NBER recession dates without a need for 

structural breaks or the restriction of linear dynamics.  
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In some cases, we might be interested in converting )|2( TtSP <  into a specific 

set of dates establishing the timing of shifts between business cycle phases.  To do so 

requires a rule for establishing whether a particular month was an expansion month or a 

recession month.  Here we consider a simple rule, which categorizes any particular month 

as an expansion month if 5.0)|2( d< TtSP  and a recession month if 

5.0)|2( !< TtSP .  The table below displays the dates of turning points between 

expansion and recession phases (business cycle peaks), and the dates of turning points 
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between recession and expansion phases (business cycle troughs) that are established by 

this rule.  For comparison, the table also lists the NBER peak and trough dates.  

The table demonstrates that the simple rule applied to )|2( TtSP <  does a very 

good job of matching the NBER peak and trough dates. Of the twelve turning points in 

the sample, the DFMS model establishes eleven within two months of the NBER date.  

The exception is the peak of the 2001 recession, for which the peak date from the DFMS 

model is four months prior to that established by the NBER.  In comparing peak and 

trough dates, the DFMS model appears to do especially well at matching NBER trough 

dates, for which the date established by the DFMS model matches the NBER date exactly 

in five of six cases.  

 
Dates of Business Cycle Turning Points Produced by NBER and Dynamic Factor  

Markov-Switching Model 
 

Peaks Troughs 

DFMS NBER Discrepancy DFMS NBER Discrepancy 
Oct 1969 Dec 1969 2M Nov 1970 Nov 1970 0M 

Dec 1973 Nov 1973 -1M Mar 1975 Mar 1975 0M 

Jan 1980 Jan 1980 0M Jun 1980 Jul 1980 1M 

Jul 1981 Jul 1981 0M Nov 1982 Nov 1982 0M 

Aug 1990 Jul 1990 -1M Mar 1991 Mar 1991 0M 

Nov 2000 Mar 2001 4M Nov 2001 Nov 2001 0M 

 

Why has the ability of Markov-switching models to identify business cycle 

turning points generated so much attention?  There are at least four reasons.  First, it is 

sometimes argued that recession and expansion phases may not be of any intrinsic 

interest, as they need not reflect any real differences in the economy’s structure.  In 
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particular, as noted by Watson (2005), simulated data from simple, constant parameter, 

time-series models, for which the notion of separate regimes is meaningless, will contain 

episodes that look to the eye like “recession” and “expansion” phases.  By capturing the 

notion of a business cycle phase formally inside of a statistical model, the Markov-

switching model is then able to provide statistical evidence as to the extent to which 

business cycle phases are a meaningful concept.  Second, although the dates of business 

cycle phases and their associated turning points are of interest to many economic 

researchers, they are not compiled in a systematic fashion for many economies.  Markov-

switching models could then be applied to obtain business cycle turning point dates for 

these economies.  An example of this is given in Owyang, Piger and Wall (2005), who 

use Markov-switching models to establish business cycle phase dates for U.S. states.  

Third, if economic time-series do display different behavior over business cycle phases, 

then Markov-switching models designed to capture such differences might be exploited 

to obtain more accurate forecasts of economic activity.  Finally, the current probability of 

a new economic turning point is likely of substantial interest to economic policymakers.  

To this end, Markov-switching models can be used for “real-time” monitoring of new 

business cycle phase shifts.  Indeed, Chauvet and Piger (2004) provide evidence that 

Markov-switching models are often quicker to establish U.S. business cycle turning 

points, particularly at business cycle troughs, than is the NBER.  For additional analysis 

of the ability of regime-switching models to establish turning points in real time, see 

Chauvet and Piger (2003) and Chauvet and Hamilton (2006). 
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VIII. Future Directions 

Research investigating applied and theoretical aspects of regime-switching models 

should be an important component of the future research agenda in macroeconomics and 

econometrics.  In this section I highlight three directions for future research that are of 

particular interest. 

To begin, additional research oriented toward improving the forecasting ability of 

regime-switching models is needed.  In particular, given that regime-switching models of 

economic data contain important deviations from traditional, constant parameter, 

alternatives, we might expect that they could also provide improved out-of-sample 

forecasts.  However, as surveyed in Clements, Franses and Swanson (2004), the 

forecasting improvements generated by regime-switching models over simpler 

alternatives is spotty at best.  That this is true is perhaps not completely surprising.  For 

example, the ability of a Markov-switching model to identify regime shifts in past data 

does not guarantee that the model will do well at detecting regime shifts quickly enough 

in real time to generate improved forecasts.  This is particularly problematic when 

regimes are short lived.  Successful efforts to improve the forecasting ability of Markov-

switching models are likely to come in the form of multivariate models, which can utilize 

additional information for quickly identifying regime shifts.  

A second potentially important direction for future research is the extension of the 

Markov-switching dynamic factor model discussed in Sections V and VII to settings with 

a large cross-section of data series.  Indeed, applications of the DFMS model have been 

largely restricted to a relatively small number of variables, such as in the model of the 

U.S. business cycle considered in Section VII.  However, in recent years there have been 
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substantial developments in the analysis of dynamic factor models comprising a large 

number of variables, as in Forni, Hallin, Lippi and Reichlin (2000, 2002, 2005) and Stock 

and Watson (2002a, 2002b).  Research extending the regime-switching framework to 

such “big data” factor models will be of substantial interest.  

Finally, much remains to be done incorporating regime-switching behavior into 

structural macroeconomic models.  A number of recent studies have begun this synthesis 

by considering the implications of regime-switches in the behavior of a fiscal or 

monetary policymaker for the dynamics and equilibrium behavior of model economies 

(Davig, Leeper and Chung, 2004; Davig and Leeper, 2005, 2006; Farmer, Waggoner and 

Zha, 2006, 2007).  This literature has already yielded a number of new and interesting 

results, and is likely to continue to do so as it expands.  Less attention has been paid to 

reconciling structural models with a list of new “stylized facts” generated by the 

application of regime-switching models in reduced-form settings.  As one example, there 

is now a substantial list of studies, including Beaudry and Koop (1993), Sichel (1994), 

Kim and Nelson (1999), Kim and Murray (2002), Hamilton (2005b) and Kim, Morley 

and Piger (2005), finding evidence that the persistence of shocks to key macroeconomic 

variables varies dramatically over business cycle phases.  However, such an asymmetry is 

absent from most modern structural macroeconomic models, which generally possess a 

symmetric propagation structure for shocks.  Research designed to incorporate and 

explain business cycle asymmetries and other types of regime-switching behavior inside 

of structural macroeconomic models will be particularly welcome.  
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