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The Bayesian approach to econometrics makes extensive use of a number of probability

density functions (pdf) and probability mass functions (pmf). Here we will discuss the most

common pdfs and pmfs used in Bayesian econometrics.

1 Location, Scale and Shape Parameters

When working with a parametric family of pdfs, we classify parameters into three types:

• Location Parameter: A parameter that shifts the location of a pdf. That is, it

moves the pdf along the x-axis, without affecting its shape or dispersion. Formally,

suppose we have a random variable x with a pdf that depends on parameters µ and θ

given by p (x;µ, θ). Then µ is a location parameter if:

p (x;µ, θ) = p (x− µ; 0, θ)

• Scale Parameter: A parameter that changes how dispersed a pdf is, without changing

its shape. Suppose we have a random variable x with a pdf that depends on parameters

s and θ given by p (x; s, θ). Then s is a scale parameter if:

p (x; s, θ) =
1

s
p (x/s; 1, θ)

• Shape Parameter: A parameter of a pdf that is neither a location parameter nor

a scale parameter (nor a function of either or both of these only). Such a parameter

must affect the shape of a pdf rather than simply shifting it or stretching/shrinking it.
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2 Univariate Probability Density Functions

2.1 Uniform Distribution

A continuous scalar random variable x has a uniform distribution with parameters a and

b if the pdf for x is given by:

p (x) =


1

b− a
if x ∈ [a, b]

0 otherwise.

,

where a < b. The typical notation is: x ∼ U (a, b).

Summary statistics for uniform distributed random variables include:

Mean: a+b
2

Median: a+b
2

Variance: (b−a)2
12

The uniform distribution is a common choice as prior pdf for a variety of parameters in

econometric models.

In Matlab, the function unifrnd(a,b,m,n) generates an m× n matrix of independent U (a, b)

random variables.

2.2 Normal Distribution

A continuous scalar random variable x has a normal distribution with location parameter

µ and scale parameter σ if the pdf for x is given by:

p (x) =
1

σ
√

2π
e
−(x− µ)2

2σ2
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where σ > 0. The typical notation is: x ∼ N (µ, σ2)

Summary statistics for normally distributed random variables include:

Mean: µ

Median: µ

Variance: σ2

The normal distribution is a common choice as prior pdf for conditional mean parameters

in econometric models.

In Matlab, the function normrnd(µ,σ,m,n) generates an m × n matrix of independent

N (µ, σ2) random variables.

2.3 t-Distribution

A continuous scalar random variable x has a t-distribution with location parameter µ,

scale parameter σ, and shape parameter v if the pdf for x is given by:

p (x) =
vv/2Γ

(
v+1
2

)
σπ1/2Γ

(
v
2

) [v +

(
x− µ
σ

)2
]−(v+1)/2

for v, σ > 0.

where Γ (·) is the Gamma function. The Gamma function is an extension of the factorial

function, with its argument shifted down by 1, to real and complex numbers. Thus, if α is

a positive integer:

Γ (α) = (α− 1)!

This is a useful result that we will use later.

The typical notation is: x ∼ t (µ, σ, v). The parameter v is often called the “degrees of

freedom parameter.”
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Summary statistics for t-distributed random variables include:

Mean: µ for v > 1.

Median: µ

Variance: v
v−2σ

2 for v > 2.

The t-distribution is sometimes used as prior pdf for conditional mean parameters in econo-

metric models.

In Matlab, the function trnd(v,m, n) generates an m × n matrix of independent t (0, 1, v)

random variables. Such realizations are said to be distributed as “Student t”. These can be

turned into t (µ, σ2, v) random variables by multiplying each random variable realization by

σ and then adding µ.

2.4 Gamma Distribution

A continuous random variable x has a Gamma distribution with shape parameter α and

scale parameter β if the pdf for x is given by:

p (x) =
1

βα
1

Γ (α)
xα−1exp

[
−x
β

]
for x > 0 and α, β > 0,

The typical notation is: x ∼ Gamma (α, β) or x ∼ G (α, β).

Summary statistics for Gamma distributed random variables include:

Mean: αβ

Median: no closed form expression

Variance: αβ2

The Gamma distribution is a common choice as prior pdf for the inverse of conditional

variance parameters (known as precision parameters), as well as other parameters constrained
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to be positive.

In Matlab, the function gamrnd(α,β,m,n) generates anm×nmatrix of independent Gamma(α, β)

random variables.

Note that
1

βα
1

Γ (α)
doesn’t depend on x. Since the pdf must integrate to unity over the

possible space for x, this implies:

βαΓ (α) =

∫ ∞
0

xα−1exp

[
−x
β

]
dx

This is a useful result that we will use later.

Another equivalent formulation of the Gamma distribution that is common in the Bayesian

econometrics literature is as follows:

p (x) =
1(

2µ
v

)v/2 1

Γ
(
v
2

)x v−2
2 exp

[
−xv

2µ

]
for x > 0 and µ, v > 0,

The two formulations are related by v = 2α and µ = αβ. So, for this formulation, the

summary statistics are given by:

Mean: µ

Median: no closed form expression

Variance: 2µ2/v

There are two other well-known distributions that are special cases of the Gamma distribu-

tion. The Chi-square distribution is a Gamma distribution with v = µ. An Exponential

distribution is a Gamma distribution with v = 2.
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2.5 Inverse Gamma Distribution

If a continuous random variable x ∼ Gamma (α, β), then z = 1/x will have an Inverse

Gamma distribution with shape parameter α and scale parameter 1/β. Its pdf is given

by:

p (z) =
βα

Γ (α)
x−α−1e−

β
x for x > 0 and α, β > 0,

where Γ (·) is the Gamma function.

The typical notation is: x ∼ IG (α, 1/β). The inverse gamma distribution can be derived

via a straightforward change of variables transformation of the Gamma distribution pdf.

The Inverse Gamma distribution is a common choice as prior pdf for variance parameters. It’s

use can be avoided if one works with “precision” parameters rather than variance parameters.

A precision parameter is the inverse of a variance parameter.

Summary statistics for Inverse Gamma distributed random variables include:

Mean: β
(α−1) for α > 1

Median: no closed form expression

Variance: β2

(α−1)2(α−2) for α > 2

A random variable that is distributed IG(α, 1/β) can be generated by generating a random

variable that is distributed G(α, β) then taking the reciprocal of this generated random

variable.

2.6 Binomial and Bernoulli Distributions

A discrete random variable x has a Binomial distribution with parameters T and θ if the

pmf for x is given by:
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Pr (x) =


(
T

x

)
θx (1− θ)T−x if x = 0, 1, 2, · · ·, T

0 if x < 0

,

where 0 < θ < 1 and T is a positive integer.

The typical notation is: x ∼ B (T, θ).

Summary statistics for Binomial distributed random variables include:

Mean: Tθ

Median: bTθc or dTθe

Variance: Tθ (1− θ)

The Binomial distribution is used as a likelihood function where an experiment results in

either “success” or “failure”, and is repeated independently T times, with probability of

success for each experiment given by θ. The distribution of the random variable x, which

counts the number of successes, is B (T, θ).

The Bernoulli distribution is a special case of the Binomial distribution with T = 1. For

this reason, the T experiments referenced in the Binomial distribution are sometimes referred

to as “Bernoulli trials.”

In Matlab, the function binornd(T, θ,m, n) generates an m×n matrix of independent B (T, θ)

random variables.

2.7 Poisson Distribution

A discrete random variable x has a Poisson distribution with shape parameter λ if the

pmf for x is given by:
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Pr (x) =


λxe−λ

x!
if x = 0, 1, 2, · · ·,

0 otherwise

,

where λ > 0.

The typical notation is: x ∼ Po (λ).

Summary statistics for a Poisson distributed random variable includes:

Mean: λ

Median: No exact solution

Variance: λ

The Poisson distribution is a popular choice of likelihood function for “count data,” where

a random variable denotes the number of times an event occurs. Note that the binomial

distribution is also a model for counts, but it assumes an upper limit (T in the notation above)

on the value of the count. The Poisson distribution does not make such an assumption.

In Matlab, the function poissrnd(λ,m, n) generates an m× n matrix of independent Po (λ)

random variables.

2.8 Negative Binomial Distribution

Note that for a Poisson distributed random variable, its mean equals its variance. However,

in actual count data the variance is often far larger than the mean, a situation referred to

as “overdispersion.”

When count data is overdispersed, a popular alternative to the Poisson is the Negative

Binomial Distribution.

A discrete random variable x has a Negative Binomial distribution with parameters r and θ

if the pmf for x is given by:
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Pr (x) =


(
x+ r − 1

x

)
θx (1− θ)r if x = 0, 1, 2, · · ·

0 if x < 0

,

The negative binomial distribution can be interpreted as follows. Suppose we do a series

of Bernoulli trials, with success probability θ, stopping when r failures have occurred. The

number of successes, x, will then have a negative binomial distribution.

The typical notation is: x ∼ NB (r, θ).

Summary statistics for Negative Binomial random variables include:

Mean:
θr

1− θ
Median: no closed form expression

Variance:
θr

(1− θ)2

The negative binomial distribution can be extended to non-integer r. In this case, the

formula for the pmf is:

Pr (x) =


Γ (x+ r)

Γ (x+ 1) Γ (r)
θx (1− θ)r if x = 0, 1, 2, · · ·

0 if x < 0

,

In this case, the negative binomial can still be thought of as a discrete counting distribution,

but it does not have the interpretation given above in terms of Bernoulli trials (since r is

not an integer).

Note that the Negative Binomial distribution can be derived as the pmf of a random vari-

able that arises from a Poisson distribution whose parameter λ is itself a random variable,

and is distributed according to a Gamma Distribution. This is an example of a “mixing”
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distribution. The extra randomness from λ gives the negative binomial an additional source

of variance over the Poisson.

3 Multivariate Distributions

3.1 Dirichlet and Beta Distribution

Consider a vector of continuous random variables X = (x1, x2, · · ·, xN)′, where
N∑
i=1

xi = 1. X

has a Dirichlet distribution with vector of shape parameters α = (α1, α2, ·, ··, αN)′ if the

joint pdf for X is given by:

p (X) =

 Γ (a)
N∏
i=1

Γ (αi)

 N∏
i=1

xαi−1i for 0 < xi < 1 and αi > 0,

where a =
N∑
i=1

αi. Note that since xN = 1−
N−1∑
i=1

xi, the Dirichlet is a N−1-variate pdf, rather

than an N -variate.

The typical notation is: X ∼ D (α).

Summary statistics for a Dirichlet distributed random variable include:

Mean: E (xi) = αi
a

Variance: V ar (xi) =
αi (a− αi)
a2 (a+ 1)

Covariance: Cov (xi, xj) = − αiαj
a2 (a+ 1)

,

The Dirichlet distribution is often used as a prior pdf for a vector of parameters that have

the interpretation of probabilities.

The Beta distribution is a special case of the Dirichlet distribution with N = 2. Note

that with N = 2, x2 = 1− x1, so this is a univariate distribution for the random variable x1
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(typically just referred to as x). The distribution for x is denoted x ∼ Beta (α1, α2), and the

pdf for x is:

p (x) =

Γ (α1 + α2)
2∏
i=1

Γ (αi)

xα1−1(1− x)α2−1 for 0 < x < 1 and α1, α2 > 0,

Summary statistics for a Beta distributed random variable includes:

Mean: E (xi) =
α1

α1 + α2

Variance: V ar (xi) =
α1α2

(α1 + α2)
2 (α1 + α2 + 1)

In Matlab, the function betarnd(α1, α2,m, n) generates an m × n matrix of independent

Beta (α1, α2) random variables.

The function

[
Γ (α1) Γ (α2)

Γ (α1 + α2)

]
is known as the Beta function with arguments α1 and α2,

and is denoted B (α1, α2). Referring to the pdf for the Beta distribution, it is clear that since

this pdf must integrate to unity over the possible space for x, the following is true:

B (α1, α2) =

∫ 1

0

xα1−1(1− x)α2−1dx

This is a useful result that we will use later. Another useful result is that when α1 and α2

are positive integers:

B (α1, α2) =
(α1 − 1)! (α2 − 1)!

(α1 + α2 − 1)!

One particularly interesting special case for the Beta distribution is when α1 = 1 and α2 = 1.

This yields the Uniform distribution for x over [0, 1].
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3.2 Multinomial Distribution

The multinomial distribution is a multivariate extension of the binomial distribution.

Consider a vector of discrete random variables X = (x1, x2, · · ·, xN)′. X has a multinomial

distribution with scalar parameter T and a vector of parameters p = (p1, p2, ·, ··, pN)′ if the

joint pmf for X is given by:

Pr (X) =


T

x1!x2! · · · xN !
px11 · · · p

xN
N if xi = 0, 1, 2, · · ·, T and

N∑
i=1

xi = T

0 otherwise

,

where 0 ≤ pi ≤ 1,
N∑
i=1

pi = 1, and T is a positive integer.

The typical notation is: X ∼M (T, p).

Summary statistics for a multinomial distributed random variable include:

Mean: E (xi) = Tpi

Variance: V ar (xi) = Tpi (1− pi)

Covariance: Cov (xi, xj) = −Tpipj,

The multinomial distribution is typically used in Bayesian econometrics with T = 1. In this

case, X will be a vector holding n− 1 zeros and a single one, and there will be N different

possible realizations of X. Each realization of X corresponds to xi = 1, i = 1, , N and

Pr (X) = Pr (xi = 1) = pi.

3.3 Multivariate Normal Distribution

Consider a vector of continuous random variables X = (x1, x2, · · ·, xN)′. X has a multi-

variate normal distribution with N ×1 vector of location parameters µ = (µ1, µ2, · · ·µN)
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and N ×N matrix of scale parameters Σ if the pdf for X is given by:

p (X) = (2π)−N/2|Σ|−1/2exp

(
−1

2
(X − µ)′Σ−1(X − µ)

)
for σ > 0.

The typical notation is: X ∼ N (µ,Σ)

Summary statistics for normally distributed random variables include:

Mean: E (xi) = µi

Variance: Var (xi) = Σii

Covariance: Cov (xi, xj) = Σij

The multivariate normal distribution is a common choice as prior pdf for conditional mean

parameters in econometric models.

Marginal and conditional densities for the multivariate Normal distribution are also dis-

tributed normal.

In Matlab, the function mvnrnd(µ,Σ,N ,d) generates an N × d matrix of N (µ,Σ) random

variables.

3.4 Multivariate t-Distribution

Consider a vector of continuous random variables X = (x1, x2, · · ·, xN)′. X has a multi-

variate t-distribution with N × 1 vector of location parameters µ, N ×N matrix of scale

parameters Σ, and shape parameter v if the probability density function for X is given by:

p (X) =
vv/2Γ

(
v+N
2

)
πN/2Γ

(
v
2

) |Σ|−1/2 [v + (X − µ)′Σ−1 (X − µ)
]−(v+N)/2

for v > 0.

The typical notation is: x ∼ t (µ,Σ, v). The parameter v is often called the “degrees of

freedom parameter.”
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Summary statistics for t-distributed random variables include:

Mean: µ for v > 1.

Median: µ

Variance-Covariance Matrix: v
v−2Σ for v > 2.

The multivariate t-distribution is sometimes used as prior pdf for conditional mean param-

eters in econometric models.

In Matlab, the function mvtrnd can be used to generate multivariate t-distributed random

variables.

Marginal and conditional densities for the multivariate t-distribution are also distributed t.

3.5 Normal-Gamma Distribution

Consider a vector of continuous random variables X = (x1, x2, · · ·, xN)′, and a scalar random

variable h. X has a normal-gamma distribution if the conditional pdf of X given h is

X|h ∼ N (µ, h−1Σ) and the marginal pdf of h is h ∼ Gamma (m, v), where we use the second

definition of the Gamma distribution described above. The joint pdf for X and h is then

given by:

p (X, h) = (2π)−N/2(h)N/2|Σ|−1/2exp

(
−h

2
(X − µ)′Σ−1(X − µ)

)
1(

2m
v

)v/2 1

Γ
(
v
2

)h v−2
2 exp

[
− hv

2m

]
.

The typical notation is: X ∼ NG (µ,Σ,m, v).

By definition, h ∼ Gamma (m, v). It can be shown that:

X ∼ t
(
µ,m−1Σ, v

)
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3.6 Wishart Distribution

The Wishart distribution is a multivariate generalization of the Gamma distribution. Let

H be an N × N positive definite symmetric random matrix. Also, let A be an N × N

matrix of parameters, and let v be a scalar parameter, where v > 0. Then H has a Wishart

distribution if the pdf for H is given by:

p (H) =
1

2vN/2πN(N−1)/4
N∏
i=1

Γ
(
v+1−i

2

) |H|(v−N−1)/2|A|−v/2exp

[
−1

2
tr
(
A−1H

)]

where tr denotes the trace operation.

The typical notation is: H ∼ W (v, A).

Summary statistics for Wishart distributed random variables include:

Mean:E (Hij) = vAij

Variance:V ar (Hij) = v
(
A2
ij + AiiAjj

)
Covariance:Cov (Hij, Hkm) = v (AikAjm + AimAjk)

The Wishart distribution is a common choice as prior pdf for the inverse of a matrix of

conditional variance and covariance parameters (known as precision parameters).

In Matlab, the function wishrnd(A, v) generates an N ×N matrix with a W (v, A) distribu-

tion.

When N = 1, the Wishart distribution reduces to a Gamma distribution.

Similar to the inverted-Gamma distribution, there is also an inverted-Wishart distribution,

which is used as a prior for a matrix of conditional variance and covariance parameters.
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4 Kernel of a Probability Distribution Function

A pdf for a vector of random variables X typically has the form p (X) = Kg (X), where

g (X) includes no terms that can both be factored out of g (X) and do not depend on X.

Here, g (X) is called the kernel of the pdf p (X) and K is a numerical constant with respect

to X whose role is to ensure that p (X) integrates to unity. This implies:

∫
X

g (X) dX =
1

K

The constant K is often referred to as the “normalizing constant” of p (X).

Suppose we have some unknown distribution h (X). If we are able to show that h (X) ∝

g (X), then we know that h (X) = p (X). In other words, X is distributed according to

p (X). This will prove to be very useful.
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